論文の概要: Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2405.11756v1
- Date: Mon, 20 May 2024 03:33:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:23:32.347090
- Title: Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning
- Title(参考訳): バイアスの消去:半監督学習のためのファインチューニング基礎モデル
- Authors: Kai Gan, Tong Wei,
- Abstract要約: 半教師付き学習(SSL)は目覚ましい進歩をみせており、多くの方法のバリエーションをもたらしている。
本稿では,FinSSLという新しいSSLアプローチを提案する。
我々は、FineSSLが複数のベンチマークデータセットにSSLの新たな状態を設定し、トレーニングコストを6倍以上削減し、さまざまな微調整と現代的なSSLアルゴリズムをシームレスに統合できることを実証した。
- 参考スコア(独自算出の注目度): 4.137391543972184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning (SSL) has witnessed remarkable progress, resulting in the emergence of numerous method variations. However, practitioners often encounter challenges when attempting to deploy these methods due to their subpar performance. In this paper, we present a novel SSL approach named FineSSL that significantly addresses this limitation by adapting pre-trained foundation models. We identify the aggregated biases and cognitive deviation problems inherent in foundation models, and propose a simple yet effective solution by imposing balanced margin softmax and decoupled label smoothing. Through extensive experiments, we demonstrate that FineSSL sets a new state of the art for SSL on multiple benchmark datasets, reduces the training cost by over six times, and can seamlessly integrate various fine-tuning and modern SSL algorithms. The source code is available at https://github.com/Gank0078/FineSSL.
- Abstract(参考訳): 半教師付き学習(SSL)は目覚ましい進歩をみせ、多くの方法のバリエーションが出現した。
しかしながら、実践者は、これらのメソッドをデプロイしようとすると、パフォーマンスが低いため、しばしば課題に遭遇する。
本稿では,FinSSLという新しいSSLアプローチを提案する。
基礎モデルに固有の集合バイアスと認知偏差問題を同定し、バランスの取れたマージンソフトマックスと疎結合ラベルスムーシングを付与することにより、シンプルで効果的な解法を提案する。
広範な実験を通じて、FineSSLは、複数のベンチマークデータセットにSSLの最先端を新たに設定し、トレーニングコストを6倍以上削減し、さまざまな微調整と現代的なSSLアルゴリズムをシームレスに統合できることを実証した。
ソースコードはhttps://github.com/Gank0078/FineSSLで入手できる。
関連論文リスト
- Reinforcement Learning-Guided Semi-Supervised Learning [20.599506122857328]
本稿では,SSLを片腕バンディット問題として定式化する新しい強化学習ガイド型SSL手法 RLGSSL を提案する。
RLGSSLは、ラベル付きデータとラベルなしデータのバランスを保ち、一般化性能を向上させるために、慎重に設計された報酬関数を組み込んでいる。
我々は,複数のベンチマークデータセットに対する広範な実験を通じてRCGSSLの有効性を実証し,我々の手法が最先端のSSL手法と比較して一貫した優れた性能を実現することを示す。
論文 参考訳(メタデータ) (2024-05-02T21:52:24Z) - Semi-supervised Learning with Deterministic Labeling and Large Margin
Projection [25.398314796157933]
ラベル付きデータの集中度と多様性は、半教師付き学習(SSL)の性能に非常に影響を与える
本研究は,OCF構造に基づいて認識される最小の安定かつ最も分散したデータに対して,カーネル化された大規模マージン計量を学習することを目的とする。
OLFに基づくSSLモデルの精度と性能の安定性は, ベースライン法に比べて大幅に向上した。
論文 参考訳(メタデータ) (2022-08-17T04:09:35Z) - OpenLDN: Learning to Discover Novel Classes for Open-World
Semi-Supervised Learning [110.40285771431687]
半教師付き学習(SSL)は、教師付き学習のアノテーションボトルネックに対処する主要なアプローチの1つである。
最近のSSLメソッドは、ラベルなしデータの大規模なリポジトリを有効活用して、ラベル付きデータの小さなセットに依存しながら、パフォーマンスを向上させることができる。
この研究は、ペアワイズ類似度損失を利用して新しいクラスを発見するOpenLDNを導入している。
論文 参考訳(メタデータ) (2022-07-05T18:51:05Z) - A Strong Baseline for Semi-Supervised Incremental Few-Shot Learning [54.617688468341704]
少ないショット学習は、限られたトレーニングサンプルを持つ新しいクラスに一般化するモデルを学ぶことを目的としている。
本研究では,(1)信頼できない擬似ラベルによる基本クラスと新クラスのあいまいさを緩和する高度に設計されたメタトレーニングアルゴリズム,(2)ラベルの少ないデータとラベルなしデータを用いて基礎知識を保ちながら,新クラスの識別的特徴を学習するモデル適応機構を提案する。
論文 参考訳(メタデータ) (2021-10-21T13:25:52Z) - Self-Supervised Learning of Graph Neural Networks: A Unified Review [50.71341657322391]
ラベルなしサンプルを多用する新たなパラダイムとして,自己教師型学習が登場している。
SSLを用いたグラフニューラルネットワーク(GNNs)のトレーニング方法の統一レビューを提供します。
gnnに対するssl手法の処理は,様々な手法の類似性と相違に光を当て,新しい手法やアルゴリズムの開発段階を定めている。
論文 参考訳(メタデータ) (2021-02-22T03:43:45Z) - End-to-end Generative Zero-shot Learning via Few-shot Learning [76.9964261884635]
ゼロショット学習(ZSL)の最先端アプローチでは、生成ネットをトレーニングし、提供されたメタデータに条件付きサンプルを合成する。
本稿では,このような手法をバックボーンとして使用し,合成した出力をFew-Shot Learningアルゴリズムに供給するエンドツーエンド生成ZSLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-08T17:35:37Z) - On Data-Augmentation and Consistency-Based Semi-Supervised Learning [77.57285768500225]
最近提案された整合性に基づく半教師付き学習(SSL)手法は,複数のSSLタスクにおいて最先端技術である。
これらの進歩にもかかわらず、これらの手法の理解はまだ比較的限られている。
論文 参考訳(メタデータ) (2021-01-18T10:12:31Z) - SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning [58.26384597768118]
SemiNLLはSS戦略とSSLモデルをエンドツーエンドで組み合わせた汎用フレームワークである。
我々のフレームワークは、様々なSS戦略やSSLバックボーンを吸収し、そのパワーを利用して有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-12-02T01:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。