Reward-Punishment Reinforcement Learning with Maximum Entropy
- URL: http://arxiv.org/abs/2405.11784v1
- Date: Mon, 20 May 2024 05:05:14 GMT
- Title: Reward-Punishment Reinforcement Learning with Maximum Entropy
- Authors: Jiexin Wang, Eiji Uchibe,
- Abstract summary: We introduce the soft Deep MaxPain'' (softDMP) algorithm, which integrates the optimization of long-term policy entropy into reward-punishment reinforcement learning objectives.
Our motivation is to facilitate a smoother variation of operators utilized in the updating of action values beyond traditional max'' and min'' operators.
- Score: 3.123049150077741
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce the ``soft Deep MaxPain'' (softDMP) algorithm, which integrates the optimization of long-term policy entropy into reward-punishment reinforcement learning objectives. Our motivation is to facilitate a smoother variation of operators utilized in the updating of action values beyond traditional ``max'' and ``min'' operators, where the goal is enhancing sample efficiency and robustness. We also address two unresolved issues from the previous Deep MaxPain method. Firstly, we investigate how the negated (``flipped'') pain-seeking sub-policy, derived from the punishment action value, collaborates with the ``min'' operator to effectively learn the punishment module and how softDMP's smooth learning operator provides insights into the ``flipping'' trick. Secondly, we tackle the challenge of data collection for learning the punishment module to mitigate inconsistencies arising from the involvement of the ``flipped'' sub-policy (pain-avoidance sub-policy) in the unified behavior policy. We empirically explore the first issue in two discrete Markov Decision Process (MDP) environments, elucidating the crucial advancements of the DMP approach and the necessity for soft treatments on the hard operators. For the second issue, we propose a probabilistic classifier based on the ratio of the pain-seeking sub-policy to the sum of the pain-seeking and goal-reaching sub-policies. This classifier assigns roll-outs to separate replay buffers for updating reward and punishment action-value functions, respectively. Our framework demonstrates superior performance in Turtlebot 3's maze navigation tasks under the ROS Gazebo simulation.
Related papers
- Zeroth-Order Policy Gradient for Reinforcement Learning from Human
Feedback without Reward Inference [17.76565371753346]
This paper develops two RLHF algorithms without reward inference.
The key idea is to estimate the local value function difference from human preferences and then approximate the policy gradient with a zeroth-order gradient approximator.
Our results show there exist provably efficient methods to solve general RLHF problems without reward inference.
arXiv Detail & Related papers (2024-09-25T22:20:11Z) - Adversarial Batch Inverse Reinforcement Learning: Learn to Reward from
Imperfect Demonstration for Interactive Recommendation [23.048841953423846]
We focus on the problem of learning to reward, which is fundamental to reinforcement learning.
Previous approaches either introduce additional procedures for learning to reward, thereby increasing the complexity of optimization.
We propose a novel batch inverse reinforcement learning paradigm that achieves the desired properties.
arXiv Detail & Related papers (2023-10-30T13:43:20Z) - Interpreting Primal-Dual Algorithms for Constrained Multiagent
Reinforcement Learning [4.67306371596399]
Most C-MARL algorithms use a primal-dual approach to enforce constraints through a penalty function added to the reward.
We show that the standard practice of using the constraint function as the penalty leads to a weak notion of safety.
We propose a constrained multiagent advantage actor critic (C-MAA2C) algorithm.
arXiv Detail & Related papers (2022-11-29T10:23:26Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Deterministic and Discriminative Imitation (D2-Imitation): Revisiting
Adversarial Imitation for Sample Efficiency [61.03922379081648]
We propose an off-policy sample efficient approach that requires no adversarial training or min-max optimization.
Our empirical results show that D2-Imitation is effective in achieving good sample efficiency, outperforming several off-policy extension approaches of adversarial imitation.
arXiv Detail & Related papers (2021-12-11T19:36:19Z) - Anti-Concentrated Confidence Bonuses for Scalable Exploration [57.91943847134011]
Intrinsic rewards play a central role in handling the exploration-exploitation trade-off.
We introduce emphanti-concentrated confidence bounds for efficiently approximating the elliptical bonus.
We develop a practical variant for deep reinforcement learning that is competitive with contemporary intrinsic rewards on Atari benchmarks.
arXiv Detail & Related papers (2021-10-21T15:25:15Z) - SoftDICE for Imitation Learning: Rethinking Off-policy Distribution
Matching [61.20581291619333]
SoftDICE achieves state-of-the-art performance for imitation learning.
We present SoftDICE, which achieves state-of-the-art performance for imitation learning.
arXiv Detail & Related papers (2021-06-06T15:37:11Z) - Exploiting Submodular Value Functions For Scaling Up Active Perception [60.81276437097671]
In active perception tasks, agent aims to select sensory actions that reduce uncertainty about one or more hidden variables.
Partially observable Markov decision processes (POMDPs) provide a natural model for such problems.
As the number of sensors available to the agent grows, the computational cost of POMDP planning grows exponentially.
arXiv Detail & Related papers (2020-09-21T09:11:36Z) - Exploration-Exploitation in Constrained MDPs [79.23623305214275]
We investigate the exploration-exploitation dilemma in Constrained Markov Decision Processes (CMDPs)
While learning in an unknown CMDP, an agent should trade-off exploration to discover new information about the MDP.
While the agent will eventually learn a good or optimal policy, we do not want the agent to violate the constraints too often during the learning process.
arXiv Detail & Related papers (2020-03-04T17:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.