論文の概要: (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts
- arxiv url: http://arxiv.org/abs/2405.11804v1
- Date: Mon, 20 May 2024 05:55:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:03:49.314870
- Title: (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts
- Title(参考訳): (おそらく)人間翻訳を超えて:超長文翻訳のための多言語共同作業
- Authors: Minghao Wu, Yulin Yuan, Gholamreza Haffari, Longyue Wang,
- Abstract要約: 本稿では,大言語モデル(LLM)をベースとした多エージェントフレームワークを,TransAgentsという企業として実装した。
本システムの有効性を評価するため,モノリンガル・ヒューマン・プライス(MHP)とバイリンガル・LLM・プライス(BLP)の2つの革新的な評価戦略を提案する。
- 参考スコア(独自算出の注目度): 52.18246881218829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in machine translation (MT) have significantly enhanced translation quality across various domains. However, the translation of literary texts remains a formidable challenge due to their complex language, figurative expressions, and cultural nuances. In this work, we introduce a novel multi-agent framework based on large language models (LLMs) for literary translation, implemented as a company called TransAgents, which mirrors traditional translation publication process by leveraging the collective capabilities of multiple agents, to address the intricate demands of translating literary works. To evaluate the effectiveness of our system, we propose two innovative evaluation strategies: Monolingual Human Preference (MHP) and Bilingual LLM Preference (BLP). MHP assesses translations from the perspective of monolingual readers of the target language, while BLP uses advanced LLMs to compare translations directly with the original texts. Empirical findings indicate that despite lower d-BLEU scores, translations from TransAgents are preferred by both human evaluators and LLMs over human-written references, particularly in genres requiring domain-specific knowledge. We also highlight the strengths and limitations of TransAgents through case studies and suggests directions for future research.
- Abstract(参考訳): 機械翻訳(MT)の最近の進歩は、様々な領域にわたる翻訳品質を大幅に向上させた。
しかし、文語の翻訳は、複雑な言語、図形表現、文化的なニュアンスのために、依然として困難な課題である。
本研究では,翻訳作業の複雑な要求に対処するため,複数のエージェントの集合的能力を活用することによって,従来の翻訳出版プロセスを反映するTransAgentsという企業として実装された,文語翻訳のための大規模言語モデル(LLM)に基づく新しいマルチエージェントフレームワークを提案する。
本システムの有効性を評価するため,モノリンガル・ヒューマン・プライス(MHP)とバイリンガル・LLM・プライス(BLP)の2つの革新的な評価戦略を提案する。
MHPは対象言語の単言語読み手の観点から翻訳を評価し、BLPは翻訳を元のテキストと直接比較するために高度なLLMを使用している。
実証的な結果は、低d-BLEUスコアにもかかわらず、TransAgentsからの翻訳は、人間による参照よりも人間による評価とLLMの両方、特にドメイン固有の知識を必要とするジャンルにおいて好まれていることを示している。
また,ケーススタディを通じてTransAgentsの強みと限界を強調し,今後の研究の方向性を提案する。
関連論文リスト
- How Good Are LLMs for Literary Translation, Really? Literary Translation Evaluation with Humans and LLMs [23.247387152595067]
LITEVAL-CORPUSは、複数の検証された人間の翻訳と9つの機械翻訳システムからの出力を含む並列コーパスである。
非文学的人為的MT評価におけるデファクトスタンダードである多次元品質指標(MQM)は、文学翻訳には不十分であることがわかった。
論文 参考訳(メタデータ) (2024-10-24T12:48:03Z) - LLM-based Translation Inference with Iterative Bilingual Understanding [45.00660558229326]
大規模言語モデル(LLM)の言語間機能に基づいた,新しい反復的バイリンガル理解翻訳法を提案する。
LLMの言語横断的能力により、ソース言語とターゲット言語を別々にコンテキスト理解することが可能になる。
提案したIBUTは、いくつかの強力な比較法より優れている。
論文 参考訳(メタデータ) (2024-10-16T13:21:46Z) - DelTA: An Online Document-Level Translation Agent Based on Multi-Level Memory [96.35468670508476]
大規模言語モデル(LLM)のための文書レバレッジ翻訳エージェントであるDelTAを紹介する。
DelTAは、様々な粒度とスパンにまたがる情報を格納するマルチレベルメモリ構造を備えている。
実験結果から,DelTAは翻訳の一貫性や品質において,強いベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2024-10-10T17:30:09Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
我々は「あいまいな文」を翻訳する大規模言語モデルの能力について研究する。
実験の結果,提案手法はDeepLやNLLBといった最先端システムと5つの言語方向のうち4つで一致し,性能を向上できることがわかった。
論文 参考訳(メタデータ) (2023-09-20T22:22:52Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
大規模言語モデル(LLM)は、一般的なシナリオにおいて印象的な機能を示している。
本研究は,マルチアスペクト・プロンプトと選択のためのMAPSフレームワークを提案する。
品質推定に基づく選択機構を用いて,ノイズや不ヘッピーな知識を抽出する。
論文 参考訳(メタデータ) (2023-05-06T19:03:12Z) - Large language models effectively leverage document-level context for
literary translation, but critical errors persist [32.54546652197316]
大規模言語モデル(LLM)は、幅広い文レベルの翻訳データセット上での最先端技術と競合する。
我々は,Gpt-3.5 (text-davinci-003) LLM) を用いて文節全体を翻訳し,高品質な翻訳を行うという厳密な評価を通して示す。
論文 参考訳(メタデータ) (2023-04-06T17:27:45Z) - Exploring Document-Level Literary Machine Translation with Parallel
Paragraphs from World Literature [35.1398797683712]
文献翻訳者は, 機械翻訳段落よりも, 84%の割合で人文翻訳を好んでいる。
我々は、通常のMT出力よりも出力が好ましい後編集モデルを専門家によって69%の速度で訓練する。
論文 参考訳(メタデータ) (2022-10-25T18:03:34Z) - On the Limitations of Cross-lingual Encoders as Exposed by
Reference-Free Machine Translation Evaluation [55.02832094101173]
クロスランガルエンコーダの評価は通常、教師付き下流タスクにおけるゼロショットのクロスランガル転送または教師なしのクロスランガル類似性によって行われる。
本稿では、ソーステキストと(低品質な)システム翻訳を直接比較するMT(Reference-free Machine Translation)の評価について述べる。
事前学習したM-BERTとLASERで得られた最先端の言語間セマンティック表現に基づいて,様々なメトリクスを体系的に検討する。
参照なしMT評価において,セマンティックエンコーダとしての性能は低く,その2つの重要な限界を同定する。
論文 参考訳(メタデータ) (2020-05-03T22:10:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。