論文の概要: SEMv3: A Fast and Robust Approach to Table Separation Line Detection
- arxiv url: http://arxiv.org/abs/2405.11862v1
- Date: Mon, 20 May 2024 08:13:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 13:53:58.462566
- Title: SEMv3: A Fast and Robust Approach to Table Separation Line Detection
- Title(参考訳): SEMv3:テーブル分離線検出のための高速かつロバストなアプローチ
- Authors: Chunxia Qin, Zhenrong Zhang, Pengfei Hu, Chenyu Liu, Jiefeng Ma, Jun Du,
- Abstract要約: テーブル構造認識(TSR)は、テーブル固有の構造を入力画像から解析することを目的としている。
スプリット・アンド・マージ(Split-and-merge)パラダイムは、テーブル分離線検出が不可欠であるテーブル構造を解析するための重要なアプローチである。
本稿では, SEMv3 (Split, Embed, Merge) を提案する。
- 参考スコア(独自算出の注目度): 48.75713662571455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Table structure recognition (TSR) aims to parse the inherent structure of a table from its input image. The `"split-and-merge" paradigm is a pivotal approach to parse table structure, where the table separation line detection is crucial. However, challenges such as wireless and deformed tables make it demanding. In this paper, we adhere to the "split-and-merge" paradigm and propose SEMv3 (SEM: Split, Embed and Merge), a method that is both fast and robust for detecting table separation lines. During the split stage, we introduce a Keypoint Offset Regression (KOR) module, which effectively detects table separation lines by directly regressing the offset of each line relative to its keypoint proposals. Moreover, in the merge stage, we define a series of merge actions to efficiently describe the table structure based on table grids. Extensive ablation studies demonstrate that our proposed KOR module can detect table separation lines quickly and accurately. Furthermore, on public datasets (e.g. WTW, ICDAR-2019 cTDaR Historical and iFLYTAB), SEMv3 achieves state-of-the-art (SOTA) performance. The code is available at https://github.com/Chunchunwumu/SEMv3.
- Abstract(参考訳): テーブル構造認識(TSR)は、テーブル固有の構造を入力画像から解析することを目的としている。
スプリット・アンド・マージ(split-and-merge)パラダイムは、テーブル分離線検出が不可欠であるテーブル構造を解析するための重要なアプローチである。
しかし、無線やデフォルメテーブルなどの課題はそれを要求している。
本稿ではスプリット・アンド・マージ(split-and-merge)パラダイムに忠実なSEMv3(Split, Embed, Merge)を提案する。
分割段階ではキーポイントオフセット回帰(KOR)モジュールを導入し、キーポイント提案に対して各行のオフセットを直接回帰することでテーブル分離ラインを効果的に検出する。
さらに、マージ段階では、テーブルグリッドに基づいたテーブル構造を効率的に記述するための一連のマージアクションを定義する。
大規模なアブレーション実験により,提案するKORモジュールはテーブル分離線を迅速かつ正確に検出できることが示された。
さらに、パブリックデータセット(例えばWTW、ICDAR-2019 cTDaR Historical、iFLYTAB)では、SEMv3は最先端(SOTA)のパフォーマンスを達成する。
コードはhttps://github.com/Chunchunwumu/SEMv3.comで公開されている。
関連論文リスト
- Robust Table Structure Recognition with Dynamic Queries Enhanced
Detection Transformer [15.708108572696062]
本稿では,TSRFormerと呼ばれる新しいテーブル構造認識手法を提案する。
これらの新しい手法により、我々のTSRFormerは、SciTSR、PubTabNet、WTW、FinTabNetなど、いくつかのベンチマークデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-03-21T06:20:49Z) - SEMv2: Table Separation Line Detection Based on Instance Segmentation [96.36188168694781]
SEMv2(SEM: Split, Embed, Merge)と呼ばれるテーブル構造認識器を提案する。
本稿では,テーブル分離ラインのインスタンスレベルの識別問題に対処し,条件付き畳み込みに基づくテーブル分離ライン検出戦略を提案する。
SEMv2を包括的に評価するために、iFLYTABと呼ばれるテーブル構造認識のためのより困難なデータセットも提示する。
論文 参考訳(メタデータ) (2023-03-08T05:15:01Z) - TRUST: An Accurate and End-to-End Table structure Recognizer Using
Splitting-based Transformers [56.56591337457137]
本稿では,TRUSTと呼ばれるテーブル構造認識手法を提案する。
変換器は、大域的な計算、完全メモリ、並列計算のためにテーブル構造認識に適している。
我々はPubTabNetやSynthTableなど,いくつかの人気のあるベンチマークで実験を行い,新しい最先端の結果を得た。
論文 参考訳(メタデータ) (2022-08-31T08:33:36Z) - TSRFormer: Table Structure Recognition with Transformers [15.708108572696064]
本稿では,TSRFormerと呼ばれる新しいテーブル構造認識手法を提案する。
新たな2段階DETRに基づくセパレータ予測手法である textbfSeparator textbfREgression textbfTRansformer (SepRETR) を提案する。
我々は、SciTSR、PubTabNet、WTWなど、いくつかのベンチマークデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-08-09T17:36:13Z) - Split, embed and merge: An accurate table structure recognizer [42.579215135672094]
テーブル構造認識器としてSplit, Embed, Merge (SEM) を導入する。
SEM は SciTSR データセットで平均 F-Measure の 96.9% を達成できる。
論文 参考訳(メタデータ) (2021-07-12T06:26:19Z) - UniRE: A Unified Label Space for Entity Relation Extraction [67.53850477281058]
合同エンティティ関係抽出モデルでは、2つのサブタスクに対して2つの分離ラベル空間を設定する。
この設定は、エンティティとリレーション間の情報相互作用を妨げる可能性があると我々は主張する。
本研究では,2つのサブタスクのラベル空間における異なる処理を除去することを提案する。
論文 参考訳(メタデータ) (2021-07-09T08:09:37Z) - TGRNet: A Table Graph Reconstruction Network for Table Structure
Recognition [76.06530816349763]
本稿では,表構造認識のためのエンドツーエンドのトレーニング可能な表グラフ再構成ネットワーク(TGRNet)を提案する。
具体的には,異なる細胞の空間的位置と論理的位置を共同で予測するために,細胞検出枝と細胞論理的位置分岐の2つの主枝を有する。
論文 参考訳(メタデータ) (2021-06-20T01:57:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。