Intuitive Fine-Tuning: Towards Simplifying Alignment into a Single Process
- URL: http://arxiv.org/abs/2405.11870v2
- Date: Tue, 28 May 2024 16:14:58 GMT
- Title: Intuitive Fine-Tuning: Towards Simplifying Alignment into a Single Process
- Authors: Ermo Hua, Biqing Qi, Kaiyan Zhang, Yue Yu, Ning Ding, Xingtai Lv, Kai Tian, Bowen Zhou,
- Abstract summary: We introduce Intuitive Fine-Tuning (IFT) to integrate SFT and Preference Optimization into a single process.
IFT performs comparably or even superiorly to sequential recipes of SFT and some typical Preference Optimization methods.
An explainable Frozen Lake game further validates the effectiveness of IFT for getting competitive policy.
- Score: 26.196705232699884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised Fine-Tuning (SFT) and Preference Optimization (PO) are two fundamental processes for enhancing the capabilities of Language Models (LMs) post pre-training, aligning them better with human preferences. Although SFT advances in training efficiency, PO delivers better alignment, thus they are often combined. However, common practices simply apply them sequentially without integrating their optimization objectives, ignoring the opportunities to bridge their paradigm gap and take the strengths from both. To obtain a unified understanding, we interpret SFT and PO with two sub-processes -- Preference Estimation and Transition Optimization -- defined at token level within the Markov Decision Process (MDP) framework. This modeling shows that SFT is only a specialized case of PO with inferior estimation and optimization. PO evaluates the quality of model's entire generated answer, whereas SFT only scores predicted tokens based on preceding tokens from target answers. Therefore, SFT overestimates the ability of model, leading to inferior optimization. Building on this view, we introduce Intuitive Fine-Tuning (IFT) to integrate SFT and Preference Optimization into a single process. IFT captures LMs' intuitive sense of the entire answers through a temporal residual connection, but it solely relies on a single policy and the same volume of non-preference-labeled data as SFT. Our experiments show that IFT performs comparably or even superiorly to sequential recipes of SFT and some typical Preference Optimization methods across several tasks, particularly those requires generation, reasoning, and fact-following abilities. An explainable Frozen Lake game further validates the effectiveness of IFT for getting competitive policy.
Related papers
- UFT: Unifying Fine-Tuning of SFT and RLHF/DPO/UNA through a Generalized Implicit Reward Function [18.54945183526789]
We introduce Unified Fine-Tuning (UFT), which integrates SFT and alignment into a single training stage.
Our experimental results demonstrate that UFT outperforms SFT on instruction-tuning data alone.
When combining instruction-tuning data with alignment data, UFT effectively prevents catastrophic forgetting.
arXiv Detail & Related papers (2024-10-28T18:34:25Z) - SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe [30.03925858123481]
We propose SFTMix, a novel recipe that elevates instruction-tuning performance beyond the conventional NTP paradigm.
Based on training dynamics, we argue that examples with different confidence levels should play distinct roles during the instruction-tuning process.
This approach enables SFTMix to significantly outperform NTP across a wide range of instruction-following and healthcare domain-specific SFT tasks.
arXiv Detail & Related papers (2024-10-07T17:52:21Z) - TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights [73.9088920210495]
We propose a token-level importance sampling DPO objective named TIS-DPO that assigns importance weights to each token based on its reward.
TIS-DPO significantly outperforms various baseline methods on harmlessness and helpfulness alignment and summarization tasks.
arXiv Detail & Related papers (2024-10-06T04:03:00Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT) is an effective approach that better aligns Large Language Models with pair-wise datasets.
ASFT mitigates the issue where the DPO loss function decreases the probability of generating human-dispreferred data.
Extensive experiments demonstrate that ASFT is an effective alignment approach, consistently outperforming existing methods.
arXiv Detail & Related papers (2024-09-14T11:39:13Z) - Geometric-Averaged Preference Optimization for Soft Preference Labels [78.2746007085333]
Many algorithms for aligning LLMs with human preferences assume that human preferences are binary and deterministic.
In this work, we introduce the distributional soft preference labels and improve Direct Preference Optimization (DPO) with a weighted geometric average of the LLM output likelihood in the loss function.
arXiv Detail & Related papers (2024-09-10T17:54:28Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - SpaFL: Communication-Efficient Federated Learning with Sparse Models and Low computational Overhead [75.87007729801304]
SpaFL: a communication-efficient FL framework is proposed to optimize sparse model structures with low computational overhead.
Experiments show that SpaFL improves accuracy while requiring much less communication and computing resources compared to sparse baselines.
arXiv Detail & Related papers (2024-06-01T13:10:35Z) - Triple Preference Optimization: Achieving Better Alignment with Less Data in a Single Step Optimization [35.36615140853107]
Triple Preference Optimization (TPO) is designed to align large language models with three preferences without requiring a separate Supervised Fine-Tuned (SFT) model.
We show that TPO achieves superior results compared to models aligned through other methods such as SFT, DPO, KTO, IPO, CPO, and ORPO.
arXiv Detail & Related papers (2024-05-26T20:18:11Z) - HFT: Half Fine-Tuning for Large Language Models [42.60438623804577]
Large language models (LLMs) with one or more fine-tuning phases have become a necessary step to unlock various capabilities.
In this paper, we find that by regularly resetting partial parameters, LLMs can restore some of the original knowledge.
We introduce Half Fine-Tuning (HFT) for LLMs, as a substitute for full fine-tuning (FFT), to mitigate the forgetting issues.
arXiv Detail & Related papers (2024-04-29T07:07:58Z) - Prefix Text as a Yarn: Eliciting Non-English Alignment in Foundation Language Model [50.339632513018934]
supervised fine-tuning (SFT) has been a straightforward approach for tailoring the output of foundation large language model (LLM) to specific preferences.
We critically examine this hypothesis within the scope of cross-lingual generation tasks.
We introduce a novel training-free alignment method named PreTTY, which employs minimal task-related prior tokens.
arXiv Detail & Related papers (2024-04-25T17:19:36Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.