TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights
- URL: http://arxiv.org/abs/2410.04350v1
- Date: Sun, 6 Oct 2024 04:03:00 GMT
- Title: TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights
- Authors: Aiwei Liu, Haoping Bai, Zhiyun Lu, Yanchao Sun, Xiang Kong, Simon Wang, Jiulong Shan, Albin Madappally Jose, Xiaojiang Liu, Lijie Wen, Philip S. Yu, Meng Cao,
- Abstract summary: We propose a token-level importance sampling DPO objective named TIS-DPO that assigns importance weights to each token based on its reward.
TIS-DPO significantly outperforms various baseline methods on harmlessness and helpfulness alignment and summarization tasks.
- Score: 73.9088920210495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Direct Preference Optimization (DPO) has been widely adopted for preference alignment of Large Language Models (LLMs) due to its simplicity and effectiveness. However, DPO is derived as a bandit problem in which the whole response is treated as a single arm, ignoring the importance differences between tokens, which may affect optimization efficiency and make it difficult to achieve optimal results. In this work, we propose that the optimal data for DPO has equal expected rewards for each token in winning and losing responses, as there is no difference in token importance. However, since the optimal dataset is unavailable in practice, we propose using the original dataset for importance sampling to achieve unbiased optimization. Accordingly, we propose a token-level importance sampling DPO objective named TIS-DPO that assigns importance weights to each token based on its reward. Inspired by previous works, we estimate the token importance weights using the difference in prediction probabilities from a pair of contrastive LLMs. We explore three methods to construct these contrastive LLMs: (1) guiding the original LLM with contrastive prompts, (2) training two separate LLMs using winning and losing responses, and (3) performing forward and reverse DPO training with winning and losing responses. Experiments show that TIS-DPO significantly outperforms various baseline methods on harmlessness and helpfulness alignment and summarization tasks. We also visualize the estimated weights, demonstrating their ability to identify key token positions.
Related papers
- Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
arXiv Detail & Related papers (2024-10-26T14:24:37Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Eliminating Biased Length Reliance of Direct Preference Optimization via Down-Sampled KL Divergence [31.03305638930844]
Direct Preference Optimization (DPO) has emerged as a prominent algorithm for the direct and robust alignment of Large Language Models with human preferences.
Despite its promising efficacy, DPO faces a notable drawback: "verbosity"
We propose that the issue also stems from an inherent algorithmic length reliance in DPO.
arXiv Detail & Related papers (2024-06-16T14:24:30Z) - Triple Preference Optimization: Achieving Better Alignment with Less Data in a Single Step Optimization [35.36615140853107]
Triple Preference Optimization (TPO) is designed to align large language models with three preferences without requiring a separate Supervised Fine-Tuned (SFT) model.
We show that TPO achieves superior results compared to models aligned through other methods such as SFT, DPO, KTO, IPO, CPO, and ORPO.
arXiv Detail & Related papers (2024-05-26T20:18:11Z) - D2PO: Discriminator-Guided DPO with Response Evaluation Models [63.71853401569461]
We propose D2PO, discriminator-guided DPO, for the online setting where preferences are being collected throughout learning.
As we collect gold preferences, we use these not only to train our policy, but to train a discriminative response evaluation model to silver-label even more synthetic data for policy training.
We show conditions under which silver labeling is most helpful: it is most effective when training the policy with DPO, outperforming traditional PPO, and benefits from maintaining a separate discriminator from the policy model.
arXiv Detail & Related papers (2024-05-02T17:44:41Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
Learning from preference labels plays a crucial role in fine-tuning large language models.
There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning.
arXiv Detail & Related papers (2024-04-22T17:20:18Z) - Token-level Direct Preference Optimization [8.249403373337024]
Fine-tuning pre-trained Large Language Models is essential to align them with human values and intentions.
We introduce Token-level Direct Preference Optimization (TDPO), a novel approach to align LLMs with human preferences by optimizing policy at the token level.
arXiv Detail & Related papers (2024-04-18T08:49:38Z) - Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for
LLM Alignment [37.52249093928251]
This paper proposes a new framework, reinforcement learning with relative feedback, and a novel trajectory-wise policy gradient algorithm.
We show theoretically that P3O is invariant to equivalent rewards and avoids the complexity of PPO.
Empirical evaluations demonstrate that P3O outperforms PPO in the KL-Reward trade-off and can align with human preferences as well as or better than prior methods.
arXiv Detail & Related papers (2023-09-30T01:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.