xFinder: Large Language Models as Automated Evaluators for Reliable Evaluation
- URL: http://arxiv.org/abs/2405.11874v3
- Date: Tue, 25 Feb 2025 11:04:02 GMT
- Title: xFinder: Large Language Models as Automated Evaluators for Reliable Evaluation
- Authors: Qingchen Yu, Zifan Zheng, Shichao Song, Zhiyu Li, Feiyu Xiong, Bo Tang, Ding Chen,
- Abstract summary: This paper shows that optimizing the key answer extraction module improves extraction accuracy and enhances evaluation reliability.<n>We propose xFinder, a novel evaluator for answer extraction and matching in large language models (LLMs) evaluation.<n>Generalization tests and real-world evaluations show that the smallest xFinder model, with only 500 million parameters, achieves an average extraction accuracy of 93.42%.<n>The final judgment accuracy of xFinder reaches 97.61%, outperforming existing evaluation frameworks and judge models.
- Score: 9.22621553566816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The continuous advancement of large language models (LLMs) has brought increasing attention to the critical issue of developing fair and reliable methods for evaluating their performance. Particularly, the emergence of cheating phenomena, such as test set leakage and prompt format overfitting, poses significant challenges to the reliable evaluation of LLMs. As evaluation frameworks commonly use Regular Expression (RegEx) for answer extraction, models may adjust their responses to fit formats easily handled by RegEx. Nevertheless, the key answer extraction module based on RegEx frequently suffers from extraction errors. Furthermore, recent studies proposing fine-tuned LLMs as judge models for automated evaluation face challenges in terms of generalization ability and fairness. This paper comprehensively analyzes the entire LLM evaluation chain and demonstrates that optimizing the key answer extraction module improves extraction accuracy and enhances evaluation reliability. Our findings suggest that improving the key answer extraction module can lead to higher judgment accuracy and improved evaluation efficiency compared to the judge models. To address these issues, we propose xFinder, a novel evaluator for answer extraction and matching in LLM evaluation. As part of this process, we create a specialized dataset, the \textbf{K}ey \textbf{A}nswer \textbf{F}inder (KAF) dataset, to ensure effective model training and evaluation. Generalization tests and real-world evaluations show that the smallest xFinder model, with only 500 million parameters, achieves an average extraction accuracy of 93.42\%. In contrast, RegEx accuracy in the best evaluation framework is 74.38\%. The final judgment accuracy of xFinder reaches 97.61\%, outperforming existing evaluation frameworks and judge models.
Related papers
- Meta-Evaluating Local LLMs: Rethinking Performance Metrics for Serious Games [3.725822359130832]
Large Language Models (LLMs) are increasingly being explored as evaluators in serious games.
This study investigates the reliability of five small-scale LLMs when assessing player responses in textitEn-join, a game that simulates decision-making within energy communities.
Our results highlight the strengths and limitations of each model, revealing trade-offs between sensitivity, specificity, and overall performance.
arXiv Detail & Related papers (2025-04-13T10:46:13Z) - R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step.
Existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy.
We propose Reasoning-Driven Process Reward Modeling (R-PRM)
R-PRM generates seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities.
arXiv Detail & Related papers (2025-03-27T09:23:08Z) - Right Answer, Wrong Score: Uncovering the Inconsistencies of LLM Evaluation in Multiple-Choice Question Answering [78.89231943329885]
One of the most widely used tasks to evaluate Large Language Models (LLMs) is Multiple-Choice Question Answering (MCQA)
In this work, we shed light on the inconsistencies of MCQA evaluation strategies, which can lead to inaccurate and misleading model comparisons.
arXiv Detail & Related papers (2025-03-19T08:45:03Z) - SCORE: Systematic COnsistency and Robustness Evaluation for Large Language Models [4.875712300661656]
We present SCORE ($mathbfS$ystematic $mathbfCO$nsistency and $mathbfR$obustness $mathbfE$valuation), a comprehensive framework for non-adversarial evaluation of Large Language Models.
The SCORE framework evaluates models by repeatedly testing them on the same benchmarks in various setups to give a realistic estimate of their accuracy and consistency.
arXiv Detail & Related papers (2025-02-28T19:27:29Z) - Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
Large language models (LLMs) have demonstrated significant utilities in real-world applications.
Benchmark evaluations are crucial for assessing the capabilities of LLMs.
arXiv Detail & Related papers (2025-02-13T03:43:33Z) - Beyond Exact Match: Semantically Reassessing Event Extraction by Large Language Models [69.38024658668887]
Current evaluation method for event extraction relies on token-level exact match.
We propose RAEE, an automatic evaluation framework that accurately assesses event extraction results at semantic-level instead of token-level.
arXiv Detail & Related papers (2024-10-12T07:54:01Z) - A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
We introduce the first formal probabilistic evaluation framework for Large Language Models (LLMs)
Namely, we propose novel metrics with high probability guarantees concerning the output distribution of a model.
Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment.
arXiv Detail & Related papers (2024-10-04T15:44:23Z) - On Speeding Up Language Model Evaluation [48.51924035873411]
Development of prompt-based methods with Large Language Models (LLMs) requires making numerous decisions.
We propose a novel method to address this challenge.
We show that it can identify the top-performing method using only 5-15% of the typically needed resources.
arXiv Detail & Related papers (2024-07-08T17:48:42Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Enhancing Large Language Model Performance To Answer Questions and
Extract Information More Accurately [2.1715455600756646]
Large Language Models (LLMs) generate responses to questions.
Their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions.
To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models.
arXiv Detail & Related papers (2024-01-27T00:18:07Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - See, Say, and Segment: Teaching LMMs to Overcome False Premises [67.36381001664635]
We propose a cascading and joint training approach for LMMs to solve this task.
Our resulting model can "see" by detecting whether objects are present in an image, "say" by telling the user if they are not, and finally "segment" by outputting the mask of the desired objects if they exist.
arXiv Detail & Related papers (2023-12-13T18:58:04Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
Relation extraction (RE) consistently involves a certain degree of labeled or unlabeled data even if under zero-shot setting.
Recent studies have shown that large language models (LLMs) transfer well to new tasks out-of-the-box simply given a natural language prompt.
This work focuses on the study of exploring LLMs as zero-shot relation extractors.
arXiv Detail & Related papers (2023-10-08T06:17:39Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
We propose a modular paradigm ReWOO that detaches the reasoning process from external observations, thus significantly reducing token consumption.
We show that ReWOO achieves 5x token efficiency and 4% accuracy improvement on HotpotQA, a multi-step reasoning benchmark.
Our illustrative work offloads reasoning ability from 175B GPT3.5 into 7B LLaMA, demonstrating the significant potential for truly efficient and scalable ALM systems.
arXiv Detail & Related papers (2023-05-23T00:16:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.