論文の概要: A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus
- arxiv url: http://arxiv.org/abs/2405.11877v5
- Date: Fri, 18 Oct 2024 13:03:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:23:37.867665
- Title: A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus
- Title(参考訳): RoNLIを応用したカルトグラフィーに基づく新しいカリキュラム学習法:ルーマニア初の自然言語推論コーパス
- Authors: Eduard Poesina, Cornelia Caragea, Radu Tudor Ionescu,
- Abstract要約: 自然言語推論は自然言語理解のプロキシである。
ルーマニア語のNLIコーパスは公開されていない。
58Kの訓練文対からなるルーマニア初のNLIコーパス(RoNLI)を紹介する。
- 参考スコア(独自算出の注目度): 71.77214818319054
- License:
- Abstract: Natural language inference (NLI), the task of recognizing the entailment relationship in sentence pairs, is an actively studied topic serving as a proxy for natural language understanding. Despite the relevance of the task in building conversational agents and improving text classification, machine translation and other NLP tasks, to the best of our knowledge, there is no publicly available NLI corpus for the Romanian language. To this end, we introduce the first Romanian NLI corpus (RoNLI) comprising 58K training sentence pairs, which are obtained via distant supervision, and 6K validation and test sentence pairs, which are manually annotated with the correct labels. We conduct experiments with multiple machine learning methods based on distant learning, ranging from shallow models based on word embeddings to transformer-based neural networks, to establish a set of competitive baselines. Furthermore, we improve on the best model by employing a new curriculum learning strategy based on data cartography. Our dataset and code to reproduce the baselines are available at https://github.com/Eduard6421/RONLI.
- Abstract(参考訳): 自然言語推論(英: Natural Language Inference, NLI)は、自然言語理解の代名詞として研究されている話題である。
対話エージェントの構築やテキスト分類、機械翻訳、その他のNLPタスクの改善には関連性があるものの、我々の知る限り、ルーマニア語のNLIコーパスは公開されていない。
この目的のために, 遠隔監視により得られた58Kの訓練文対と, 正確なラベルを手動で注釈付けした6Kの検証とテスト文対からなるルーマニア初のNLIコーパス(RoNLI)を導入する。
我々は、単語埋め込みに基づく浅いモデルからトランスフォーマーベースのニューラルネットワークまで、遠隔学習に基づく複数の機械学習手法で実験を行い、競争力のあるベースラインを確立する。
さらに、データ地図に基づく新しいカリキュラム学習戦略を採用することにより、最良のモデルを改善する。
ベースラインを再現するデータセットとコードは、https://github.com/Eduard6421/RONLI.orgで公開されています。
関連論文リスト
- Cross-Lingual Word Alignment for ASEAN Languages with Contrastive Learning [5.5119571570277826]
言語間単語アライメントは、自然言語処理タスクにおいて重要な役割を果たす。
近年,BiLSTMを用いたエンコーダデコーダモデルを提案する。
本稿では,BiLSTMに基づくエンコーダデコーダフレームワークにコントラスト学習を取り入れることを提案する。
論文 参考訳(メタデータ) (2024-07-06T11:56:41Z) - A deep Natural Language Inference predictor without language-specific
training data [44.26507854087991]
本研究では,言語固有の訓練データセットを使わずに,目的言語における文のペア間の推論関係(NLI)に対処するためのNLP手法を提案する。
我々は、同じトレーニング済みモデルの2つのインスタンスとともに、手動で翻訳される汎用翻訳データセットを利用する。
このモデルは、機械翻訳Stanford NLIテストデータセット、機械翻訳Multi-Genre NLIテストデータセット、手動翻訳RTE3-ITAテストデータセットで評価されている。
論文 参考訳(メタデータ) (2023-09-06T10:20:59Z) - Pre-Training to Learn in Context [138.0745138788142]
言語モデルが文脈で学習するために明示的に訓練されていないため、コンテキスト内学習の能力は十分に活用されていない。
In-Context Learning のための PICL (Pre-training for In-Context Learning) を提案する。
実験の結果,PICLはベースラインよりも効率が高く,タスクの汎用性が高く,約4倍のパラメータを持つ言語モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-05-16T03:38:06Z) - Analyzing Vietnamese Legal Questions Using Deep Neural Networks with
Biaffine Classifiers [3.116035935327534]
我々は深層ニューラルネットワークを用いてベトナムの法的問題から重要な情報を抽出することを提案する。
自然言語で法的疑問が与えられた場合、その疑問に答えるために必要な情報を含む全てのセグメントを抽出することが目的である。
論文 参考訳(メタデータ) (2023-04-27T18:19:24Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - OCNLI: Original Chinese Natural Language Inference [21.540733910984006]
我々は,中国における最初の大規模NLIデータセット(56,000の注釈付き文対からなる)であるOriginal Chinese Natural Language Inference dataset(OCNLI)を提示する。
NLIを他の言語に拡張しようとする最近の試みとは異なり、私たちのデータセットは自動翻訳や非専門家アノテーションに依存していません。
我々は、中国語の最先端の事前訓練モデルを用いて、データセット上でいくつかのベースライン結果を確立し、人間のパフォーマンスよりもはるかに優れたパフォーマンスモデルを見つける。
論文 参考訳(メタデータ) (2020-10-12T04:25:48Z) - N-LTP: An Open-source Neural Language Technology Platform for Chinese [68.58732970171747]
textttN-は、中国の6つの基本的なNLPタスクをサポートする、オープンソースのニューラルネットワークテクノロジプラットフォームである。
textttN-は、中国のタスク間で共有知識をキャプチャする利点がある共有事前学習モデルを使用することで、マルチタスクフレームワークを採用する。
論文 参考訳(メタデータ) (2020-09-24T11:45:39Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。