A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus
- URL: http://arxiv.org/abs/2405.11877v5
- Date: Fri, 18 Oct 2024 13:03:05 GMT
- Title: A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus
- Authors: Eduard Poesina, Cornelia Caragea, Radu Tudor Ionescu,
- Abstract summary: Natural language inference is a proxy for natural language understanding.
There is no publicly available NLI corpus for the Romanian language.
We introduce the first Romanian NLI corpus (RoNLI) comprising 58K training sentence pairs.
- Score: 71.77214818319054
- License:
- Abstract: Natural language inference (NLI), the task of recognizing the entailment relationship in sentence pairs, is an actively studied topic serving as a proxy for natural language understanding. Despite the relevance of the task in building conversational agents and improving text classification, machine translation and other NLP tasks, to the best of our knowledge, there is no publicly available NLI corpus for the Romanian language. To this end, we introduce the first Romanian NLI corpus (RoNLI) comprising 58K training sentence pairs, which are obtained via distant supervision, and 6K validation and test sentence pairs, which are manually annotated with the correct labels. We conduct experiments with multiple machine learning methods based on distant learning, ranging from shallow models based on word embeddings to transformer-based neural networks, to establish a set of competitive baselines. Furthermore, we improve on the best model by employing a new curriculum learning strategy based on data cartography. Our dataset and code to reproduce the baselines are available at https://github.com/Eduard6421/RONLI.
Related papers
- Cross-Lingual Word Alignment for ASEAN Languages with Contrastive Learning [5.5119571570277826]
Cross-lingual word alignment plays a crucial role in various natural language processing tasks.
Recent study proposes a BiLSTM-based encoder-decoder model that outperforms pre-trained language models in low-resource settings.
We propose incorporating contrastive learning into the BiLSTM-based encoder-decoder framework.
arXiv Detail & Related papers (2024-07-06T11:56:41Z) - A deep Natural Language Inference predictor without language-specific
training data [44.26507854087991]
We present a technique of NLP to tackle the problem of inference relation (NLI) between pairs of sentences in a target language of choice without a language-specific training dataset.
We exploit a generic translation dataset, manually translated, along with two instances of the same pre-trained model.
The model has been evaluated over machine translated Stanford NLI test dataset, machine translated Multi-Genre NLI test dataset, and manually translated RTE3-ITA test dataset.
arXiv Detail & Related papers (2023-09-06T10:20:59Z) - Pre-Training to Learn in Context [138.0745138788142]
The ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context.
We propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models' in-context learning ability.
Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters.
arXiv Detail & Related papers (2023-05-16T03:38:06Z) - Analyzing Vietnamese Legal Questions Using Deep Neural Networks with
Biaffine Classifiers [3.116035935327534]
We propose using deep neural networks to extract important information from Vietnamese legal questions.
Given a legal question in natural language, the goal is to extract all the segments that contain the needed information to answer the question.
arXiv Detail & Related papers (2023-04-27T18:19:24Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
We propose a new approach for learning contextualised cross-lingual word embeddings based on a small parallel corpus.
Our method obtains word embeddings via an LSTM encoder-decoder model that simultaneously translates and reconstructs an input sentence.
arXiv Detail & Related papers (2020-10-27T22:24:01Z) - OCNLI: Original Chinese Natural Language Inference [21.540733910984006]
We present the first large-scale NLI dataset (consisting of 56,000 annotated sentence pairs) for Chinese called the Original Chinese Natural Language Inference dataset (OCNLI)
Unlike recent attempts at extending NLI to other languages, our dataset does not rely on any automatic translation or non-expert annotation.
We establish several baseline results on our dataset using state-of-the-art pre-trained models for Chinese, and find even the best performing models to be far outpaced by human performance.
arXiv Detail & Related papers (2020-10-12T04:25:48Z) - N-LTP: An Open-source Neural Language Technology Platform for Chinese [68.58732970171747]
textttN- is an open-source neural language technology platform supporting six fundamental Chinese NLP tasks.
textttN- adopts the multi-task framework by using a shared pre-trained model, which has the advantage of capturing the shared knowledge across relevant Chinese tasks.
arXiv Detail & Related papers (2020-09-24T11:45:39Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP)
In this paper, we explore the landscape of introducing transfer learning techniques for NLP by a unified framework that converts all text-based language problems into a text-to-text format.
arXiv Detail & Related papers (2019-10-23T17:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.