A comprehensive overview of deep learning techniques for 3D point cloud classification and semantic segmentation
- URL: http://arxiv.org/abs/2405.11903v1
- Date: Mon, 20 May 2024 09:33:27 GMT
- Title: A comprehensive overview of deep learning techniques for 3D point cloud classification and semantic segmentation
- Authors: Sushmita Sarker, Prithul Sarker, Gunner Stone, Ryan Gorman, Alireza Tavakkoli, George Bebis, Javad Sattarvand,
- Abstract summary: This paper analyzes recent progress in deep learning methods employed for point cloud processing.
It serves as a comprehensive review on two major tasks in 3D point cloud processing-- namely, 3D shape classification and semantic segmentation.
- Score: 0.20649496811699863
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Point cloud analysis has a wide range of applications in many areas such as computer vision, robotic manipulation, and autonomous driving. While deep learning has achieved remarkable success on image-based tasks, there are many unique challenges faced by deep neural networks in processing massive, unordered, irregular and noisy 3D points. To stimulate future research, this paper analyzes recent progress in deep learning methods employed for point cloud processing and presents challenges and potential directions to advance this field. It serves as a comprehensive review on two major tasks in 3D point cloud processing-- namely, 3D shape classification and semantic segmentation.
Related papers
- Deep Learning-Based 3D Instance and Semantic Segmentation: A Review [0.0]
3D segmentation is challenging with point cloud data due to substantial redundancy, fluctuating sample density and lack of organization.
Deep learning has been successfully used to a spectrum of 2D vision domains as a prevailing A.I. methods.
This study examines many strategies that have been presented to 3D instance and semantic segmentation.
arXiv Detail & Related papers (2024-06-19T07:56:14Z) - Deep Learning-based 3D Point Cloud Classification: A Systematic Survey
and Outlook [12.014972829130764]
This paper introduces point cloud acquisition, characteristics, and challenges.
We review 3D data representations, storage formats, and commonly used datasets for point cloud classification.
arXiv Detail & Related papers (2023-11-05T09:28:43Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - Explore In-Context Learning for 3D Point Cloud Understanding [71.20912026561484]
We introduce a novel framework, named Point-In-Context, designed especially for in-context learning in 3D point clouds.
We propose the Joint Sampling module, carefully designed to work in tandem with the general point sampling operator.
We conduct extensive experiments to validate the versatility and adaptability of our proposed methods in handling a wide range of tasks.
arXiv Detail & Related papers (2023-06-14T17:53:21Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
This paper presents the first comprehensive survey of label-efficient learning of point clouds.
We propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels.
For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges.
arXiv Detail & Related papers (2023-05-31T12:54:51Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
We propose a point discriminative learning method for unsupervised representation learning on 3D point clouds.
We achieve this by imposing a novel point discrimination loss on the middle level and global level point features.
Our method learns powerful representations and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2021-08-04T15:11:48Z) - Deep Learning for 3D Point Cloud Understanding: A Survey [16.35767262996978]
The development of practical applications, such as autonomous driving and robotics, has brought increasing attention to 3D point cloud understanding.
Deep learning has achieved remarkable success on image-based tasks, but there are many unique challenges faced by deep neural networks in processing massive, unstructured and noisy 3D points.
This paper summarizes recent remarkable research contributions in this area from several different directions.
arXiv Detail & Related papers (2020-09-18T16:34:12Z) - Review: deep learning on 3D point clouds [9.73176900969663]
Point cloud is one of the most significant data formats for 3D representation.
Deep learning is now the most powerful tool for data processing in computer vision.
arXiv Detail & Related papers (2020-01-17T12:55:23Z) - Deep Learning for 3D Point Clouds: A Survey [58.954684611055]
This paper presents a review of recent progress in deep learning methods for point clouds.
It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation.
It also presents comparative results on several publicly available datasets.
arXiv Detail & Related papers (2019-12-27T09:15:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.