PT43D: A Probabilistic Transformer for Generating 3D Shapes from Single Highly-Ambiguous RGB Images
- URL: http://arxiv.org/abs/2405.11914v3
- Date: Mon, 04 Nov 2024 10:48:54 GMT
- Title: PT43D: A Probabilistic Transformer for Generating 3D Shapes from Single Highly-Ambiguous RGB Images
- Authors: Yiheng Xiong, Angela Dai,
- Abstract summary: We propose a transformer-based autoregressive model to generate 3D shapes from single RGB images.
To handle realistic scenarios such as field-of-view truncation, we create simulated image-to-shape training pairs.
We then adopt cross-attention to effectively identify the most relevant region of interest from the input image for shape generation.
- Score: 26.900974153235456
- License:
- Abstract: Generating 3D shapes from single RGB images is essential in various applications such as robotics. Current approaches typically target images containing clear and complete visual descriptions of the object, without considering common realistic cases where observations of objects that are largely occluded or truncated. We thus propose a transformer-based autoregressive model to generate the probabilistic distribution of 3D shapes conditioned on an RGB image containing potentially highly ambiguous observations of the object. To handle realistic scenarios such as occlusion or field-of-view truncation, we create simulated image-to-shape training pairs that enable improved fine-tuning for real-world scenarios. We then adopt cross-attention to effectively identify the most relevant region of interest from the input image for shape generation. This enables inference of sampled shapes with reasonable diversity and strong alignment with the input image. We train and test our model on our synthetic data then fine-tune and test it on real-world data. Experiments demonstrate that our model outperforms state of the art in both scenarios.
Related papers
- Object-Centric Domain Randomization for 3D Shape Reconstruction in the Wild [22.82439286651921]
One of the biggest challenges in single-view 3D shape reconstruction in the wild is the scarcity of 3D shape, 2D image>-paired data from real-world environments.
Inspired by remarkable achievements via domain randomization, we propose ObjectDR which synthesizes such paired data via a random simulation of visual variations in object appearances and backgrounds.
arXiv Detail & Related papers (2024-03-21T16:40:10Z) - ConRad: Image Constrained Radiance Fields for 3D Generation from a
Single Image [15.997195076224312]
We present a novel method for reconstructing 3D objects from a single RGB image.
Our method leverages the latest image generation models to infer the hidden 3D structure.
We show that our 3D reconstructions remain more faithful to the input and produce more consistent 3D models.
arXiv Detail & Related papers (2023-11-09T09:17:10Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
Reconstructing the 3D shape of an object from a single RGB image is a long-standing and highly challenging problem in computer vision.
We propose a novel method for single-image 3D reconstruction which generates a sparse point cloud via a conditional denoising diffusion process.
arXiv Detail & Related papers (2023-02-21T13:37:07Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
We study the problem of shape generation in 3D mesh representation from a small number of color images with or without camera poses.
We adopt to further improve the shape quality by leveraging cross-view information with a graph convolution network.
Our model is robust to the quality of the initial mesh and the error of camera pose, and can be combined with a differentiable function for test-time optimization.
arXiv Detail & Related papers (2022-04-21T03:42:31Z) - A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware
Image Synthesis [163.96778522283967]
We propose a shading-guided generative implicit model that is able to learn a starkly improved shape representation.
An accurate 3D shape should also yield a realistic rendering under different lighting conditions.
Our experiments on multiple datasets show that the proposed approach achieves photorealistic 3D-aware image synthesis.
arXiv Detail & Related papers (2021-10-29T10:53:12Z) - Sim2Air - Synthetic aerial dataset for UAV monitoring [2.1638817206926855]
We propose to accentuate shape-based object representation by applying texture randomization.
A diverse dataset with photorealism in all parameters is created in a 3D modelling software Blender.
arXiv Detail & Related papers (2021-10-11T10:36:33Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
We propose a method to detect and reconstruct multiple 3D objects from a single RGB image.
A keypoint detector localizes objects as center points and directly predicts all object properties, including 9-DoF bounding boxes and 3D shapes.
The presented approach performs lightweight reconstruction in a single-stage, it is real-time capable, fully differentiable and end-to-end trainable.
arXiv Detail & Related papers (2020-12-21T18:52:21Z) - Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using
Deep Shape Priors [69.02332607843569]
PriSMONet is a novel approach for learning Multi-Object 3D scene decomposition and representations from single images.
A recurrent encoder regresses a latent representation of 3D shape, pose and texture of each object from an input RGB image.
We evaluate the accuracy of our model in inferring 3D scene layout, demonstrate its generative capabilities, assess its generalization to real images, and point out benefits of the learned representation.
arXiv Detail & Related papers (2020-10-08T14:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.