Data Augmentation for Text-based Person Retrieval Using Large Language Models
- URL: http://arxiv.org/abs/2405.11971v1
- Date: Mon, 20 May 2024 11:57:50 GMT
- Title: Data Augmentation for Text-based Person Retrieval Using Large Language Models
- Authors: Zheng Li, Lijia Si, Caili Guo, Yang Yang, Qiushi Cao,
- Abstract summary: Text-based Person Retrieval (TPR) aims to retrieve person images that match the description given a text query.
It is difficult to construct a large-scale, high-quality TPR dataset due to expensive annotation and privacy protection.
This paper proposes an LLM-based Data Augmentation (LLM-DA) method for TPR.
- Score: 16.120524750964016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-based Person Retrieval (TPR) aims to retrieve person images that match the description given a text query. The performance improvement of the TPR model relies on high-quality data for supervised training. However, it is difficult to construct a large-scale, high-quality TPR dataset due to expensive annotation and privacy protection. Recently, Large Language Models (LLMs) have approached or even surpassed human performance on many NLP tasks, creating the possibility to expand high-quality TPR datasets. This paper proposes an LLM-based Data Augmentation (LLM-DA) method for TPR. LLM-DA uses LLMs to rewrite the text in the current TPR dataset, achieving high-quality expansion of the dataset concisely and efficiently. These rewritten texts are able to increase the diversity of vocabulary and sentence structure while retaining the original key concepts and semantic information. In order to alleviate the hallucinations of LLMs, LLM-DA introduces a Text Faithfulness Filter (TFF) to filter out unfaithful rewritten text. To balance the contributions of original text and augmented text, a Balanced Sampling Strategy (BSS) is proposed to control the proportion of original text and augmented text used for training. LLM-DA is a plug-and-play method that can be easily integrated into various TPR models. Comprehensive experiments on three TPR benchmarks show that LLM-DA can improve the retrieval performance of current TPR models.
Related papers
- CUDRT: Benchmarking the Detection Models of Human vs. Large Language Models Generated Texts [9.682499180341273]
Large language models (LLMs) have greatly enhanced text generation across industries.
Their human-like outputs make distinguishing between human and AI authorship challenging.
Current benchmarks mainly rely on static datasets, limiting their effectiveness in assessing model-based detectors.
arXiv Detail & Related papers (2024-06-13T12:43:40Z) - ReMoDetect: Reward Models Recognize Aligned LLM's Generations [55.06804460642062]
Large language models (LLMs) generate human-preferable texts.
In this paper, we identify the common characteristics shared by these models.
We propose two training schemes to further improve the detection ability of the reward model.
arXiv Detail & Related papers (2024-05-27T17:38:33Z) - CT-Eval: Benchmarking Chinese Text-to-Table Performance in Large Language Models [36.82189550072201]
Existing text-to-table datasets are typically oriented English.
Large language models (LLMs) have shown great success as general task solvers in multi-lingual settings.
We propose a Chinese text-to-table dataset, CT-Eval, to benchmark LLMs on this task.
arXiv Detail & Related papers (2024-05-20T16:58:02Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Making Large Language Models A Better Foundation For Dense Retrieval [19.38740248464456]
Dense retrieval needs to learn discriminative text embeddings to represent the semantic relationship between query and document.
It may benefit from the using of large language models (LLMs), given LLMs' strong capability on semantic understanding.
We propose LLaRA (LLM adapted for dense RetrievAl), which works as a post-hoc adaptation of dense retrieval application.
arXiv Detail & Related papers (2023-12-24T15:10:35Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing.
It is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text.
We propose a simple yet efficient solution by ensembling predictions from multiple constituent LLMs.
arXiv Detail & Related papers (2023-11-06T13:11:02Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
Large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task.
We propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus.
Our experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results.
arXiv Detail & Related papers (2023-10-17T03:21:43Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.