Data Augmentation for Text-based Person Retrieval Using Large Language Models
- URL: http://arxiv.org/abs/2405.11971v1
- Date: Mon, 20 May 2024 11:57:50 GMT
- Title: Data Augmentation for Text-based Person Retrieval Using Large Language Models
- Authors: Zheng Li, Lijia Si, Caili Guo, Yang Yang, Qiushi Cao,
- Abstract summary: Text-based Person Retrieval (TPR) aims to retrieve person images that match the description given a text query.
It is difficult to construct a large-scale, high-quality TPR dataset due to expensive annotation and privacy protection.
This paper proposes an LLM-based Data Augmentation (LLM-DA) method for TPR.
- Score: 16.120524750964016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-based Person Retrieval (TPR) aims to retrieve person images that match the description given a text query. The performance improvement of the TPR model relies on high-quality data for supervised training. However, it is difficult to construct a large-scale, high-quality TPR dataset due to expensive annotation and privacy protection. Recently, Large Language Models (LLMs) have approached or even surpassed human performance on many NLP tasks, creating the possibility to expand high-quality TPR datasets. This paper proposes an LLM-based Data Augmentation (LLM-DA) method for TPR. LLM-DA uses LLMs to rewrite the text in the current TPR dataset, achieving high-quality expansion of the dataset concisely and efficiently. These rewritten texts are able to increase the diversity of vocabulary and sentence structure while retaining the original key concepts and semantic information. In order to alleviate the hallucinations of LLMs, LLM-DA introduces a Text Faithfulness Filter (TFF) to filter out unfaithful rewritten text. To balance the contributions of original text and augmented text, a Balanced Sampling Strategy (BSS) is proposed to control the proportion of original text and augmented text used for training. LLM-DA is a plug-and-play method that can be easily integrated into various TPR models. Comprehensive experiments on three TPR benchmarks show that LLM-DA can improve the retrieval performance of current TPR models.
Related papers
- Idiosyncrasies in Large Language Models [54.26923012617675]
We unveil and study idiosyncrasies in Large Language Models (LLMs)
We find that fine-tuning existing text embedding models on LLM-generated texts yields excellent classification accuracy.
We leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies.
arXiv Detail & Related papers (2025-02-17T18:59:02Z) - Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
Machine-generated content poses challenges such as academic plagiarism and the spread of misinformation.
We introduce novel methodologies and datasets to overcome these challenges.
We propose MhBART, an encoder-decoder model designed to emulate human writing style.
We also propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features.
arXiv Detail & Related papers (2024-12-17T08:47:41Z) - Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts [1.565361244756411]
Large language models (LLMs) play a crucial role in natural language processing (NLP) tasks.
This study applied prompt-based data augmentation to detect mentions of green practices in Russian social media.
arXiv Detail & Related papers (2024-11-22T12:37:41Z) - ReMoDetect: Reward Models Recognize Aligned LLM's Generations [55.06804460642062]
Large language models (LLMs) generate human-preferable texts.
In this paper, we identify the common characteristics shared by these models.
We propose two training schemes to further improve the detection ability of the reward model.
arXiv Detail & Related papers (2024-05-27T17:38:33Z) - CT-Eval: Benchmarking Chinese Text-to-Table Performance in Large Language Models [36.82189550072201]
Existing text-to-table datasets are typically oriented English.
Large language models (LLMs) have shown great success as general task solvers in multi-lingual settings.
We propose a Chinese text-to-table dataset, CT-Eval, to benchmark LLMs on this task.
arXiv Detail & Related papers (2024-05-20T16:58:02Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Making Large Language Models A Better Foundation For Dense Retrieval [19.38740248464456]
Dense retrieval needs to learn discriminative text embeddings to represent the semantic relationship between query and document.
It may benefit from the using of large language models (LLMs), given LLMs' strong capability on semantic understanding.
We propose LLaRA (LLM adapted for dense RetrievAl), which works as a post-hoc adaptation of dense retrieval application.
arXiv Detail & Related papers (2023-12-24T15:10:35Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing.
It is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text.
We propose a simple yet efficient solution by ensembling predictions from multiple constituent LLMs.
arXiv Detail & Related papers (2023-11-06T13:11:02Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.