Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2405.12003v4
- Date: Sat, 13 Jul 2024 08:22:46 GMT
- Title: Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
- Authors: Weilian Zhou, Sei-Ichiro Kamata, Haipeng Wang, Man-Sing Wong, Huiying, Hou,
- Abstract summary: This study introduces the innovative Mamba-in-Mamba (MiM) architecture for HSI classification, the first attempt of deploying State Space Model (SSM) in this task.
MiM model includes 1) A novel centralized Mamba-Cross-Scan (MCS) mechanism for transforming images into sequence-data, 2) A Tokenized Mamba (T-Mamba) encoder, and 3) A Weighted MCS Fusion (WMF) module.
Experimental results from three public HSI datasets demonstrate that our method outperforms existing baselines and state-of-the-art approaches.
- Score: 4.389334324926174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image (HSI) classification is pivotal in the remote sensing (RS) field, particularly with the advancement of deep learning techniques. Sequential models, adapted from the natural language processing (NLP) field such as Recurrent Neural Networks (RNNs) and Transformers, have been tailored to this task, offering a unique viewpoint. However, several challenges persist 1) RNNs struggle with centric feature aggregation and are sensitive to interfering pixels, 2) Transformers require significant computational resources and often underperform with limited HSI training samples, and 3) Current scanning methods for converting images into sequence-data are simplistic and inefficient. In response, this study introduces the innovative Mamba-in-Mamba (MiM) architecture for HSI classification, the first attempt of deploying State Space Model (SSM) in this task. The MiM model includes 1) A novel centralized Mamba-Cross-Scan (MCS) mechanism for transforming images into sequence-data, 2) A Tokenized Mamba (T-Mamba) encoder that incorporates a Gaussian Decay Mask (GDM), a Semantic Token Learner (STL), and a Semantic Token Fuser (STF) for enhanced feature generation and concentration, and 3) A Weighted MCS Fusion (WMF) module coupled with a Multi-Scale Loss Design to improve decoding efficiency. Experimental results from three public HSI datasets with fixed and disjoint training-testing samples demonstrate that our method outperforms existing baselines and state-of-the-art approaches, highlighting its efficacy and potential in HSI applications.
Related papers
- DefMamba: Deformable Visual State Space Model [65.50381013020248]
We propose a novel visual foundation model called DefMamba.
By combining a deformable scanning(DS) strategy, this model significantly improves its ability to learn image structures and detects changes in object details.
Numerous experiments have shown that DefMamba achieves state-of-the-art performance in various visual tasks.
arXiv Detail & Related papers (2025-04-08T08:22:54Z) - RoMA: Scaling up Mamba-based Foundation Models for Remote Sensing [28.488986896516284]
RoMA is a framework that enables scalable self-supervised pretraining of RS foundation models using large-scale, diverse, unlabeled data.
RoMA enhances scalability for high-resolution images through a tailored auto-regressive learning strategy.
experiments across scene classification, object detection, and semantic segmentation tasks demonstrate that RoMA-pretrained Mamba models consistently outperform ViT-based counterparts in both accuracy and computational efficiency.
arXiv Detail & Related papers (2025-03-13T14:09:18Z) - Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging [40.80197280147993]
We propose a Mamba-inspired Joint Unfolding Network (MiJUN) to overcome the inherent nonlinear and ill-posed characteristics of HSI reconstruction.
We introduce an accelerated unfolding network scheme, which reduces the reliance on initial optimization stages.
We refine the scanning strategy with Mamba by integrating the tensor mode-$k$ unfolding into the Mamba network.
arXiv Detail & Related papers (2025-01-02T13:56:23Z) - Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mamba, as a novel state-space model (SSM), has gained widespread application in natural language processing and computer vision.
In this work, we introduce Mamba-SEUNet, an innovative architecture that integrates Mamba with U-Net for SE tasks.
arXiv Detail & Related papers (2024-12-21T13:43:51Z) - MLLA-UNet: Mamba-like Linear Attention in an Efficient U-Shape Model for Medical Image Segmentation [6.578088710294546]
Traditional segmentation methods struggle to address challenges such as high anatomical variability, blurred tissue boundaries, low organ contrast, and noise.
We propose MLLA-UNet (Mamba-Like Linear Attention UNet), a novel architecture that achieves linear computational complexity while maintaining high segmentation accuracy.
Experiments demonstrate that MLLA-UNet achieves state-of-the-art performance on six challenging datasets with 24 different segmentation tasks, including but not limited to FLARE22, AMOS CT, and ACDC, with an average DSC of 88.32%.
arXiv Detail & Related papers (2024-10-31T08:54:23Z) - Unsupervised Modality Adaptation with Text-to-Image Diffusion Models for Semantic Segmentation [54.96563068182733]
We propose Modality Adaptation with text-to-image Diffusion Models (MADM) for semantic segmentation task.
MADM utilizes text-to-image diffusion models pre-trained on extensive image-text pairs to enhance the model's cross-modality capabilities.
We show that MADM achieves state-of-the-art adaptation performance across various modality tasks, including images to depth, infrared, and event modalities.
arXiv Detail & Related papers (2024-10-29T03:49:40Z) - Hi-Mamba: Hierarchical Mamba for Efficient Image Super-Resolution [42.259283231048954]
State Space Models (SSM) have shown strong representation ability in modeling long-range dependency with linear complexity.
We propose a novel Hierarchical Mamba network, namely, Hi-Mamba, for image super-resolution (SR)
arXiv Detail & Related papers (2024-10-14T04:15:04Z) - MaskMamba: A Hybrid Mamba-Transformer Model for Masked Image Generation [63.73137438677585]
MaskMamba is a novel hybrid model that combines Mamba and Transformer architectures.
It achieves a remarkable $54.44%$ improvement in inference speed at a resolution of $2048times 2048$ over Transformer.
arXiv Detail & Related papers (2024-09-30T04:28:55Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - Spatial-Spectral Morphological Mamba for Hyperspectral Image Classification [27.04370747400184]
This paper introduces the Spatial-Spectral Morphological Mamba (MorpMamba) model in which, a token generation module first converts the hyperspectral image patch into spatial-spectral tokens.
These tokens are processed by morphological operations, which compute structural and shape information using depthwise separable convolutional operations.
Experiments on widely used HSI datasets demonstrate that the MorpMamba model outperforms (parametric efficiency) both CNN and Transformer models.
arXiv Detail & Related papers (2024-08-02T16:28:51Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.
Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model [66.35608254724566]
State-space models (SSMs) have showcased effective performance in modeling long-range dependencies with subquadratic complexity.
However, pure SSM-based models still face challenges related to stability and achieving optimal performance on computer vision tasks.
Our paper addresses the challenges of scaling SSM-based models for computer vision, particularly the instability and inefficiency of large model sizes.
arXiv Detail & Related papers (2024-07-18T17:59:58Z) - Self-Prior Guided Mamba-UNet Networks for Medical Image Super-Resolution [7.97504951029884]
We propose a self-prior guided Mamba-UNet network (SMamba-UNet) for medical image super-resolution.
Inspired by Mamba, our approach aims to learn the self-prior multi-scale contextual features under Mamba-UNet networks.
arXiv Detail & Related papers (2024-07-08T14:41:53Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
We develop the first attempt to integrate the Vision State Space Model (Mamba) for remote sensing image (RSI) super-resolution.
To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR.
Our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM)
arXiv Detail & Related papers (2024-05-08T11:09:24Z) - Spectral-Spatial Mamba for Hyperspectral Image Classification [23.215920983979426]
spectral-spatial Mamba (SS-Mamba) is applied to hyperspectral image (HSI) classification.
The proposed SS-Mamba mainly consists of spectral-spatial token generation module and several stacked spectral-spatial Mamba blocks.
The experimental results conducted on widely used HSI datasets reveal that the proposed model achieves competitive results.
arXiv Detail & Related papers (2024-04-29T03:36:05Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.