Self-Prior Guided Mamba-UNet Networks for Medical Image Super-Resolution
- URL: http://arxiv.org/abs/2407.05993v1
- Date: Mon, 8 Jul 2024 14:41:53 GMT
- Title: Self-Prior Guided Mamba-UNet Networks for Medical Image Super-Resolution
- Authors: Zexin Ji, Beiji Zou, Xiaoyan Kui, Pierre Vera, Su Ruan,
- Abstract summary: We propose a self-prior guided Mamba-UNet network (SMamba-UNet) for medical image super-resolution.
Inspired by Mamba, our approach aims to learn the self-prior multi-scale contextual features under Mamba-UNet networks.
- Score: 7.97504951029884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a self-prior guided Mamba-UNet network (SMamba-UNet) for medical image super-resolution. Existing methods are primarily based on convolutional neural networks (CNNs) or Transformers. CNNs-based methods fail to capture long-range dependencies, while Transformer-based approaches face heavy calculation challenges due to their quadratic computational complexity. Recently, State Space Models (SSMs) especially Mamba have emerged, capable of modeling long-range dependencies with linear computational complexity. Inspired by Mamba, our approach aims to learn the self-prior multi-scale contextual features under Mamba-UNet networks, which may help to super-resolve low-resolution medical images in an efficient way. Specifically, we obtain self-priors by perturbing the brightness inpainting of the input image during network training, which can learn detailed texture and brightness information that is beneficial for super-resolution. Furthermore, we combine Mamba with Unet network to mine global features at different levels. We also design an improved 2D-Selective-Scan (ISS2D) module to divide image features into different directional sequences to learn long-range dependencies in multiple directions, and adaptively fuse sequence information to enhance super-resolved feature representation. Both qualitative and quantitative experimental results demonstrate that our approach outperforms current state-of-the-art methods on two public medical datasets: the IXI and fastMRI.
Related papers
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - MSVM-UNet: Multi-Scale Vision Mamba UNet for Medical Image Segmentation [3.64388407705261]
We propose a Multi-Scale Vision Mamba UNet model for medical image segmentation, termed MSVM-UNet.
Specifically, by introducing multi-scale convolutions in the VSS blocks, we can more effectively capture and aggregate multi-scale feature representations from the hierarchical features of the VMamba encoder.
arXiv Detail & Related papers (2024-08-25T06:20:28Z) - DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis [56.849285913695184]
Diffusion Mamba (DiM) is a sequence model for efficient high-resolution image synthesis.
DiM architecture achieves inference-time efficiency for high-resolution images.
Experiments demonstrate the effectiveness and efficiency of our DiM.
arXiv Detail & Related papers (2024-05-23T06:53:18Z) - I2I-Mamba: Multi-modal medical image synthesis via selective state space modeling [8.48392350084504]
We propose a novel adversarial model for medical image synthesis, I2I-Mamba, to efficiently capture long-range context.
I2I-Mamba offers superior performance against state-of-the-art CNN- and transformer-based methods in synthesizing target-modality images.
arXiv Detail & Related papers (2024-05-22T21:55:58Z) - Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification [4.389334324926174]
This study introduces the innovative Mamba-in-Mamba (MiM) architecture for HSI classification, the first attempt of deploying State Space Model (SSM) in this task.
MiM model includes 1) A novel centralized Mamba-Cross-Scan (MCS) mechanism for transforming images into sequence-data, 2) A Tokenized Mamba (T-Mamba) encoder, and 3) A Weighted MCS Fusion (WMF) module.
Experimental results from three public HSI datasets demonstrate that our method outperforms existing baselines and state-of-the-art approaches.
arXiv Detail & Related papers (2024-05-20T13:19:02Z) - MedMamba: Vision Mamba for Medical Image Classification [0.0]
Vision transformers (ViTs) and convolutional neural networks (CNNs) have been extensively studied and widely used in medical image classification tasks.
Recent studies have shown that state space models (SSMs) represented by Mamba can effectively model long-range dependencies.
We propose MedMamba, the first Vision Mamba for generalized medical image classification.
arXiv Detail & Related papers (2024-03-06T16:49:33Z) - Semi-Mamba-UNet: Pixel-Level Contrastive and Pixel-Level Cross-Supervised Visual Mamba-based UNet for Semi-Supervised Medical Image Segmentation [11.637738540262797]
This study introduces Semi-Mamba-UNet, which integrates a purely visual Mamba-based encoder-decoder architecture with a conventional CNN-based UNet into a semi-supervised learning framework.
This innovative SSL approach leverages both networks to generate pseudo-labels and cross-supervise one another at the pixel level simultaneously.
We introduce a self-supervised pixel-level contrastive learning strategy that employs a pair of projectors to enhance the feature learning capabilities further.
arXiv Detail & Related papers (2024-02-11T17:09:21Z) - Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
We introduce a new neural network architecture, termed LoGoNet, with a tailored self-supervised learning (SSL) method.
LoGoNet integrates a novel feature extractor within a U-shaped architecture, leveraging Large Kernel Attention (LKA) and a dual encoding strategy.
We propose a novel SSL method tailored for 3D images to compensate for the lack of large labeled datasets.
arXiv Detail & Related papers (2024-02-09T05:06:58Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
This paper introduces a novel Mamba-based model, Swin-UMamba, designed specifically for medical image segmentation tasks.
Swin-UMamba demonstrates superior performance with a large margin compared to CNNs, ViTs, and latest Mamba-based models.
arXiv Detail & Related papers (2024-02-05T18:58:11Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.