論文の概要: Reindex-Then-Adapt: Improving Large Language Models for Conversational Recommendation
- arxiv url: http://arxiv.org/abs/2405.12119v1
- Date: Mon, 20 May 2024 15:37:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 12:45:20.572015
- Title: Reindex-Then-Adapt: Improving Large Language Models for Conversational Recommendation
- Title(参考訳): Reindex-Then-Adapt:会話レコメンデーションのための大規模言語モデルの改善
- Authors: Zhankui He, Zhouhang Xie, Harald Steck, Dawen Liang, Rahul Jha, Nathan Kallus, Julian McAuley,
- Abstract要約: 大規模言語モデル(LLM)は、会話レコメンデーションシステムに革命をもたらしている。
本稿では,マルチトークンのタイトルを単一トークンに変換するReindex-Then-Adapt(RTA)フレームワークを提案する。
本フレームワークでは,3つの対話推薦データセットの精度向上を実証する。
- 参考スコア(独自算出の注目度): 50.19602159938368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are revolutionizing conversational recommender systems by adeptly indexing item content, understanding complex conversational contexts, and generating relevant item titles. However, controlling the distribution of recommended items remains a challenge. This leads to suboptimal performance due to the failure to capture rapidly changing data distributions, such as item popularity, on targeted conversational recommendation platforms. In conversational recommendation, LLMs recommend items by generating the titles (as multiple tokens) autoregressively, making it difficult to obtain and control the recommendations over all items. Thus, we propose a Reindex-Then-Adapt (RTA) framework, which converts multi-token item titles into single tokens within LLMs, and then adjusts the probability distributions over these single-token item titles accordingly. The RTA framework marries the benefits of both LLMs and traditional recommender systems (RecSys): understanding complex queries as LLMs do; while efficiently controlling the recommended item distributions in conversational recommendations as traditional RecSys do. Our framework demonstrates improved accuracy metrics across three different conversational recommendation datasets and two adaptation settings
- Abstract(参考訳): 大規模言語モデル(LLM)は、アイテム内容のインデックス付け、複雑な会話コンテキストの理解、関連する項目タイトルの生成によって、会話レコメンデーションシステムに革命をもたらしている。
しかし,推奨項目の流通管理は依然として課題である。
これにより、ターゲットとなる会話レコメンデーションプラットフォーム上で、アイテムの人気など、急速に変化するデータ配信をキャプチャできないため、サブ最適化のパフォーマンスが向上する。
会話のレコメンデーションでは、LLMはタイトル(複数のトークン)を自動回帰的に生成することでアイテムを推薦し、すべてのアイテムのレコメンデーションを取得し、制御することが困難になる。
そこで本稿では,マルチトークンのタイトルをLPM内のシングルトークンに変換するReindex-Then-Adapt (RTA) フレームワークを提案し,それに応じて,これらのシングルトークンのタイトルに対する確率分布を調整する。
RTAフレームワークは、LLMと従来のレコメンデーションシステム(RecSys)の両方の利点をマージしている。
我々のフレームワークは、3つの異なる会話レコメンデーションデータセットと2つの適応設定にまたがる精度の指標を実証する
関連論文リスト
- Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - Laser: Parameter-Efficient LLM Bi-Tuning for Sequential Recommendation with Collaborative Information [76.62949982303532]
協調情報を用いた逐次レコメンデーションのためのパラメータ効率の高い大規模言語モデルバイチューニングフレームワーク(Laser)を提案する。
我々のレーザーでは,プレフィックスを用いてユーザと協調的な情報を取り込み,LLMをレコメンデーションタスクに適応させ,サフィックスは言語空間からレコメンデーションスペースへのLLMの出力埋め込みをリコメンデーション項目レコメンデーションスペースに変換する。
M-Formerは軽量なMoEベースのクエリ変換器で、クエリ専門家のセットを使用して、凍結IDベースのシーケンシャルレコメンデータシステムによって符号化された多様なユーザ固有の協調情報を統合する。
論文 参考訳(メタデータ) (2024-09-03T04:55:03Z) - Taxonomy-Guided Zero-Shot Recommendations with LLMs [45.81618062939684]
大規模言語モデル (LLM) はレコメンデータシステム (RecSys) において有望であることを示す。
項目情報の明瞭度と構造を改善するため,分類学辞書を用いた新しい手法を提案する。
TaxRecは従来のゼロショットアプローチに比べて推奨品質を大幅に向上させる。
論文 参考訳(メタデータ) (2024-06-20T07:06:58Z) - TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation [16.93374578679005]
TokenRecは、大規模言語モデル(LLM)ベースのRecommender Systems(RecSys)のトークン化と検索のための新しいフレームワークである。
我々の戦略であるMasked Vector-Quantized (MQ) Tokenizerは、協調フィルタリングから学んだマスキングされたユーザ/イテム表現を離散トークンに定量化する。
我々の生成的検索パラダイムは,自動回帰復号処理やビーム検索処理の不要さを解消するために,ユーザに対してKドル以上のアイテムを効率的に推奨するように設計されている。
論文 参考訳(メタデータ) (2024-06-15T00:07:44Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
ランキングベースレコメンデーション(LlamaRec)のための大規模言語モデルを用いた2段階フレームワークを提案する。
特に,ユーザインタラクション履歴に基づいて候補を検索するために,小規模なシーケンシャルレコメンデータを用いる。
LlamaRecは、推奨パフォーマンスと効率の両方において、データセットの優れたパフォーマンスを一貫して達成している。
論文 参考訳(メタデータ) (2023-10-25T06:23:48Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - How to Index Item IDs for Recommendation Foundation Models [49.425959632372425]
Recommendation foundation modelは、リコメンデーションタスクを自然言語タスクに変換することで、リコメンデーションのために大きな言語モデル(LLM)を利用する。
過剰に長いテキストや幻覚的なレコメンデーションを生成するのを避けるために、LCM互換のアイテムIDを作成することが不可欠である。
本稿では,シーケンシャルインデックス,協調インデックス,セマンティックインデックス(コンテンツベース)インデックス,ハイブリッドインデックスの4つを提案する。
論文 参考訳(メタデータ) (2023-05-11T05:02:37Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
本稿では,広く利用可能なアイテムコレクションにおいて,符号化された専門知識を活用することで,現実的な高品質な会話データを生成するTalkWalkを提案する。
人間の収集したデータセットで100万以上の多様な会話を生成します。
論文 参考訳(メタデータ) (2023-01-27T01:54:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。