DTLLM-VLT: Diverse Text Generation for Visual Language Tracking Based on LLM
- URL: http://arxiv.org/abs/2405.12139v2
- Date: Wed, 09 Oct 2024 14:13:00 GMT
- Title: DTLLM-VLT: Diverse Text Generation for Visual Language Tracking Based on LLM
- Authors: Xuchen Li, Xiaokun Feng, Shiyu Hu, Meiqi Wu, Dailing Zhang, Jing Zhang, Kaiqi Huang,
- Abstract summary: Visual Language Tracking (VLT) enhances single object tracking (SOT) by integrating natural language descriptions from a video, for the precise tracking of a specified object.
Most VLT benchmarks are annotated in a single granularity and lack a coherent semantic framework to provide scientific guidance.
We introduce DTLLM-VLT, which automatically generates extensive and multi-granularity text to enhance environmental diversity.
- Score: 23.551036494221222
- License:
- Abstract: Visual Language Tracking (VLT) enhances single object tracking (SOT) by integrating natural language descriptions from a video, for the precise tracking of a specified object. By leveraging high-level semantic information, VLT guides object tracking, alleviating the constraints associated with relying on a visual modality. Nevertheless, most VLT benchmarks are annotated in a single granularity and lack a coherent semantic framework to provide scientific guidance. Moreover, coordinating human annotators for high-quality annotations is laborious and time-consuming. To address these challenges, we introduce DTLLM-VLT, which automatically generates extensive and multi-granularity text to enhance environmental diversity. (1) DTLLM-VLT generates scientific and multi-granularity text descriptions using a cohesive prompt framework. Its succinct and highly adaptable design allows seamless integration into various visual tracking benchmarks. (2) We select three prominent benchmarks to deploy our approach: short-term tracking, long-term tracking, and global instance tracking. We offer four granularity combinations for these benchmarks, considering the extent and density of semantic information, thereby showcasing the practicality and versatility of DTLLM-VLT. (3) We conduct comparative experiments on VLT benchmarks with different text granularities, evaluating and analyzing the impact of diverse text on tracking performance. Conclusionally, this work leverages LLM to provide multi-granularity semantic information for VLT task from efficient and diverse perspectives, enabling fine-grained evaluation of multi-modal trackers. In the future, we believe this work can be extended to more datasets to support vision datasets understanding.
Related papers
- How Texts Help? A Fine-grained Evaluation to Reveal the Role of Language in Vision-Language Tracking [23.551036494221222]
Vision-language tracking (VLT) extends traditional single object tracking by incorporating textual information.
Current VLT trackers often underperform compared to single-modality methods on multiple benchmarks.
We propose VLTVerse, the first fine-grained evaluation framework for VLT trackers.
arXiv Detail & Related papers (2024-11-23T16:31:40Z) - ChatTracker: Enhancing Visual Tracking Performance via Chatting with Multimodal Large Language Model [29.702895846058265]
Vision-Language(VL) trackers have proposed to utilize additional natural language descriptions to enhance versatility in various applications.
VL trackers are still inferior to State-of-The-Art (SoTA) visual trackers in terms of tracking performance.
We propose ChatTracker to leverage the wealth of world knowledge in the Multimodal Large Language Model (MLLM) to generate high-quality language descriptions.
arXiv Detail & Related papers (2024-11-04T02:43:55Z) - DTVLT: A Multi-modal Diverse Text Benchmark for Visual Language Tracking Based on LLM [23.551036494221222]
We propose a new visual language tracking benchmark with diverse texts, named DTVLT, based on five prominent VLT and SOT benchmarks.
We offer four texts in our benchmark, considering the extent and density of semantic information.
We conduct comprehensive experimental analyses on DTVLT, evaluating the impact of diverse text on tracking performance.
arXiv Detail & Related papers (2024-10-03T13:57:07Z) - Visual Language Tracking with Multi-modal Interaction: A Robust Benchmark [23.551036494221222]
Visual Language Tracking (VLT) enhances tracking by mitigating the limitations of relying solely on the visual modality.
Current VLT benchmarks do not account for multi-round interactions during tracking.
We propose a novel and robust benchmark, VLT-MI, which introduces multi-round interaction into the VLT task for the first time.
arXiv Detail & Related papers (2024-09-13T14:54:37Z) - Multi-Granularity Language-Guided Multi-Object Tracking [95.91263758294154]
We propose a new multi-object tracking framework, named LG-MOT, that explicitly leverages language information at different levels of granularity.
At inference, our LG-MOT uses the standard visual features without relying on annotated language descriptions.
Our LG-MOT achieves an absolute gain of 2.2% in terms of target object association (IDF1 score) compared to the baseline using only visual features.
arXiv Detail & Related papers (2024-06-07T11:18:40Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
We construct adversarial user instructions by attacking user instructions at sentence, semantic, and multi-language levels.
We test 3 closed-source and 4 open-source LLMs using a benchmark that incorporates robustness settings.
We find that GPT-4 exhibits the highest performance and strong robustness in our benchmark.
arXiv Detail & Related papers (2024-03-06T15:33:32Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
We propose a contrastive learning framework, termed Document Object COntrastive learning (DoCo)
DoCo leverages an auxiliary multimodal encoder to obtain the features of document objects and align them to the visual features generated by the vision encoder of Large Visual-Language Models (LVLMs)
We demonstrate that the proposed DoCo serves as a plug-and-play pre-training method, which can be employed in the pre-training of various LVLMs without inducing any increase in computational complexity during the inference process.
arXiv Detail & Related papers (2024-02-29T10:17:27Z) - Vision-Language Instruction Tuning: A Review and Analysis [52.218690619616474]
Vision-Language Instruction Tuning (VLIT) presents more complex characteristics compared to pure text instruction tuning.
We offer a detailed categorization for existing VLIT datasets and identify the characteristics that high-quality VLIT data should possess.
By incorporating these characteristics as guiding principles into the existing VLIT data construction process, we conduct extensive experiments and verify their positive impact on the performance of tuned multi-modal LLMs.
arXiv Detail & Related papers (2023-11-14T14:02:32Z) - Towards Unified Token Learning for Vision-Language Tracking [65.96561538356315]
We present a vision-language (VL) tracking pipeline, termed textbfMMTrack, which casts VL tracking as a token generation task.
Our proposed framework serializes language description and bounding box into a sequence of discrete tokens.
In this new design paradigm, all token queries are required to perceive the desired target and directly predict spatial coordinates of the target.
arXiv Detail & Related papers (2023-08-27T13:17:34Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.