How Texts Help? A Fine-grained Evaluation to Reveal the Role of Language in Vision-Language Tracking
- URL: http://arxiv.org/abs/2411.15600v1
- Date: Sat, 23 Nov 2024 16:31:40 GMT
- Title: How Texts Help? A Fine-grained Evaluation to Reveal the Role of Language in Vision-Language Tracking
- Authors: Xuchen Li, Shiyu Hu, Xiaokun Feng, Dailing Zhang, Meiqi Wu, Jing Zhang, Kaiqi Huang,
- Abstract summary: Vision-language tracking (VLT) extends traditional single object tracking by incorporating textual information.
Current VLT trackers often underperform compared to single-modality methods on multiple benchmarks.
We propose VLTVerse, the first fine-grained evaluation framework for VLT trackers.
- Score: 23.551036494221222
- License:
- Abstract: Vision-language tracking (VLT) extends traditional single object tracking by incorporating textual information, providing semantic guidance to enhance tracking performance under challenging conditions like fast motion and deformations. However, current VLT trackers often underperform compared to single-modality methods on multiple benchmarks, with semantic information sometimes becoming a "distraction." To address this, we propose VLTVerse, the first fine-grained evaluation framework for VLT trackers that comprehensively considers multiple challenge factors and diverse semantic information, hoping to reveal the role of language in VLT. Our contributions include: (1) VLTVerse introduces 10 sequence-level challenge labels and 6 types of multi-granularity semantic information, creating a flexible and multi-dimensional evaluation space for VLT; (2) leveraging 60 subspaces formed by combinations of challenge factors and semantic types, we conduct systematic fine-grained evaluations of three mainstream SOTA VLT trackers, uncovering their performance bottlenecks across complex scenarios and offering a novel perspective on VLT evaluation; (3) through decoupled analysis of experimental results, we examine the impact of various semantic types on specific challenge factors in relation to different algorithms, providing essential guidance for enhancing VLT across data, evaluation, and algorithmic dimensions. The VLTVerse, toolkit, and results will be available at \url{http://metaverse.aitestunion.com}.
Related papers
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
Large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning.
Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks.
We present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks.
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - DTVLT: A Multi-modal Diverse Text Benchmark for Visual Language Tracking Based on LLM [23.551036494221222]
We propose a new visual language tracking benchmark with diverse texts, named DTVLT, based on five prominent VLT and SOT benchmarks.
We offer four texts in our benchmark, considering the extent and density of semantic information.
We conduct comprehensive experimental analyses on DTVLT, evaluating the impact of diverse text on tracking performance.
arXiv Detail & Related papers (2024-10-03T13:57:07Z) - Visual Language Tracking with Multi-modal Interaction: A Robust Benchmark [23.551036494221222]
Visual Language Tracking (VLT) enhances tracking by mitigating the limitations of relying solely on the visual modality.
Current VLT benchmarks do not account for multi-round interactions during tracking.
We propose a novel and robust benchmark, VLT-MI, which introduces multi-round interaction into the VLT task for the first time.
arXiv Detail & Related papers (2024-09-13T14:54:37Z) - Multi-Granularity Language-Guided Multi-Object Tracking [95.91263758294154]
We propose a new multi-object tracking framework, named LG-MOT, that explicitly leverages language information at different levels of granularity.
At inference, our LG-MOT uses the standard visual features without relying on annotated language descriptions.
Our LG-MOT achieves an absolute gain of 2.2% in terms of target object association (IDF1 score) compared to the baseline using only visual features.
arXiv Detail & Related papers (2024-06-07T11:18:40Z) - DTLLM-VLT: Diverse Text Generation for Visual Language Tracking Based on LLM [23.551036494221222]
Visual Language Tracking (VLT) enhances single object tracking (SOT) by integrating natural language descriptions from a video, for the precise tracking of a specified object.
Most VLT benchmarks are annotated in a single granularity and lack a coherent semantic framework to provide scientific guidance.
We introduce DTLLM-VLT, which automatically generates extensive and multi-granularity text to enhance environmental diversity.
arXiv Detail & Related papers (2024-05-20T16:01:01Z) - Efficient Vision-and-Language Pre-training with Text-Relevant Image Patch Selection [66.72992463712299]
Vision Transformers (ViTs) have become increasingly popular in large-scale Vision and Language Pre-training models.
Previous research has demonstrated the efficacy of ViTs, but they still struggle with computational inefficiencies caused by lengthy visual sequences.
We introduce TRIPS, which reduces the visual sequence using a text-guided patch-selection layer in the visual backbone.
Our experimental results reveal that TRIPS delivers a 40% speedup, while maintaining competitive or superior performance on downstream tasks.
arXiv Detail & Related papers (2024-01-11T14:31:30Z) - Vision-Language Instruction Tuning: A Review and Analysis [52.218690619616474]
Vision-Language Instruction Tuning (VLIT) presents more complex characteristics compared to pure text instruction tuning.
We offer a detailed categorization for existing VLIT datasets and identify the characteristics that high-quality VLIT data should possess.
By incorporating these characteristics as guiding principles into the existing VLIT data construction process, we conduct extensive experiments and verify their positive impact on the performance of tuned multi-modal LLMs.
arXiv Detail & Related papers (2023-11-14T14:02:32Z) - Divert More Attention to Vision-Language Object Tracking [87.31882921111048]
We argue that the lack of large-scale vision-language annotated videos and ineffective vision-language interaction learning motivate us to design more effective vision-language representation for tracking.
Particularly, in this paper, we first propose a general attribute annotation strategy to decorate videos in six popular tracking benchmarks, which contributes a large-scale vision-language tracking database with more than 23,000 videos.
We then introduce a novel framework to improve tracking by learning a unified-adaptive VL representation, where the cores are the proposed asymmetric architecture search and modality mixer (ModaMixer)
arXiv Detail & Related papers (2023-07-19T15:22:06Z) - A Survey on Temporal Sentence Grounding in Videos [69.13365006222251]
Temporal sentence grounding in videos(TSGV) aims to localize one target segment from an untrimmed video with respect to a given sentence query.
To the best of our knowledge, this is the first systematic survey on temporal sentence grounding.
arXiv Detail & Related papers (2021-09-16T15:01:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.