Fennec: Fine-grained Language Model Evaluation and Correction Extended through Branching and Bridging
- URL: http://arxiv.org/abs/2405.12163v1
- Date: Mon, 20 May 2024 16:47:22 GMT
- Title: Fennec: Fine-grained Language Model Evaluation and Correction Extended through Branching and Bridging
- Authors: Xiaobo Liang, Haoke Zhang, Helan hu, Juntao Li, Jun Xu, Min Zhang,
- Abstract summary: We present a step-by-step evaluation framework, textbfFennec, capable of textbfFine-grained textbfEvaluatiotextbfN textbfExtended through brantextbfChing and bridging.
We employ the fine-grained correction capabilities induced by the evaluation model to refine multiple model responses, leading to an improvement of 1-2 points on the MT-Bench.
- Score: 25.078498180620425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of large language models has given rise to a plethora of applications across a myriad of real-world tasks, mainly centered on aligning with human intent. However, the complexities inherent in human intent necessitate a dependence on labor-intensive and time-consuming human evaluation. To alleviate this constraint, we delve into the paradigm of employing open-source large language models as evaluators, aligning with the prevailing trend of utilizing GPT-4. Particularly, we present a step-by-step evaluation framework: \textbf{Fennec}, capable of \textbf{F}ine-grained \textbf{E}valuatio\textbf{N} and correctio\textbf{N} \textbf{E}xtended through bran\textbf{C}hing and bridging. Specifically, the branching operation dissects the evaluation task into various dimensions and granularities, thereby alleviating the challenges associated with evaluation. Concurrently, the bridging operation amalgamates diverse training datasets, augmenting the variety of evaluation tasks. In experimental trials, our 7B model consistently outperforms open-source larger-scale evaluation models across various widely adopted benchmarks in terms of both \textit{Agreement} and \textit{Consistency}, closely approaching the capabilities of GPT-4. We employ the fine-grained correction capabilities induced by the evaluation model to refine multiple model responses, and the results show that the refinement elevates the quality of responses, leading to an improvement of 1-2 points on the MT-Bench. Our code is available at Github\footnote{\url{https://github.com/dropreg/Fennec}}.
Related papers
- Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications.<n>One core challenge of evaluation in the large language model (LLM) era is the generalization issue.<n>We propose Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores.
arXiv Detail & Related papers (2025-04-10T04:09:47Z) - PALATE: Peculiar Application of the Law of Total Expectation to Enhance the Evaluation of Deep Generative Models [0.5499796332553708]
Deep generative models (DGMs) have caused a paradigm shift in the field of machine learning.
A comprehensive evaluation of these models that accounts for the trichotomy between fidelity, diversity, and novelty in generated samples remains a formidable challenge.
We propose PALATE, a novel enhancement to the evaluation of DGMs that addresses limitations of existing metrics.
arXiv Detail & Related papers (2025-03-24T09:06:45Z) - Rethinking Relation Extraction: Beyond Shortcuts to Generalization with a Debiased Benchmark [53.876493664396506]
Benchmarks are crucial for evaluating machine learning algorithm performance, facilitating comparison and identifying superior solutions.<n>This paper addresses the issue of entity bias in relation extraction tasks, where models tend to rely on entity mentions rather than context.<n>We propose a debiased relation extraction benchmark DREB that breaks the pseudo-correlation between entity mentions and relation types through entity replacement.<n>To establish a new baseline on DREB, we introduce MixDebias, a debiasing method combining data-level and model training-level techniques.
arXiv Detail & Related papers (2025-01-02T17:01:06Z) - Assessment of Transformer-Based Encoder-Decoder Model for Human-Like Summarization [0.05852077003870416]
This work leverages transformer-based BART model for human-like summarization.
On training and fine-tuning the encoder-decoder model, it is tested with diverse sample articles.
The finetuned model performance is compared with the baseline pretrained model.
Empirical results on BBC News articles highlight that the gold standard summaries written by humans are more factually consistent by 17%.
arXiv Detail & Related papers (2024-10-22T09:25:04Z) - Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging [33.23758947497205]
Advanced embedding models are typically developed using large-scale multi-task data and joint training across multiple tasks.
To overcome these challenges, we explore model merging-a technique that combines independently trained models to mitigate gradient conflicts and balance data distribution.
We introduce a novel method, Self Positioning, which efficiently searches for optimal model combinations within the space of task vectors using gradient descent.
arXiv Detail & Related papers (2024-10-19T08:39:21Z) - In2Core: Leveraging Influence Functions for Coreset Selection in Instruction Finetuning of Large Language Models [37.45103473809928]
We propose the In2Core algorithm, which selects a coreset by analyzing the correlation between training and evaluation samples with a trained model.
By applying our algorithm to instruction fine-tuning data of LLMs, we can achieve similar performance with just 50% of the training data.
arXiv Detail & Related papers (2024-08-07T05:48:05Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - MT-Eval: A Multi-Turn Capabilities Evaluation Benchmark for Large
Language Models [70.92847554971065]
We introduce MT-Eval, a comprehensive benchmark designed to evaluate multi-turn conversational abilities.
By analyzing human-LLM conversations, we categorize interaction patterns into four types: recollection, expansion, refinement, and follow-up.
Our evaluation of 11 well-known LLMs shows that while closed-source models generally surpass open-source ones, certain open-source models exceed GPT-3.5-Turbo in specific tasks.
arXiv Detail & Related papers (2024-01-30T04:50:28Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
We propose a generative judge with 13B parameters, Auto-J, designed to address these challenges.
Our model is trained on user queries and LLM-generated responses under massive real-world scenarios.
Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models.
arXiv Detail & Related papers (2023-10-09T07:27:15Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.
We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.
By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
A document summary's quality can be assessed by human annotators on various criteria, both objective ones like grammar and correctness, and subjective ones like informativeness, succinctness, and appeal.
Most of the automatic evaluation methods like BLUE/ROUGE may be not able to adequately capture the above dimensions.
We propose a new evaluation framework based on LLMs, which provides a comprehensive evaluation framework by comparing generated text and reference text from both objective and subjective aspects.
arXiv Detail & Related papers (2023-03-27T10:40:59Z) - Towards a Unified Multi-Dimensional Evaluator for Text Generation [101.47008809623202]
We propose a unified multi-dimensional evaluator UniEval for Natural Language Generation (NLG)
We re-frame NLG evaluation as a Boolean Question Answering (QA) task, and by guiding the model with different questions, we can use one evaluator to evaluate from multiple dimensions.
Experiments on three typical NLG tasks show that UniEval correlates substantially better with human judgments than existing metrics.
arXiv Detail & Related papers (2022-10-13T17:17:03Z) - TextFlint: Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing [73.16475763422446]
We propose a multilingual robustness evaluation platform for NLP tasks (TextFlint)
It incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analysis.
TextFlint generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model's robustness.
arXiv Detail & Related papers (2021-03-21T17:20:38Z) - SummEval: Re-evaluating Summarization Evaluation [169.622515287256]
We re-evaluate 14 automatic evaluation metrics in a comprehensive and consistent fashion.
We benchmark 23 recent summarization models using the aforementioned automatic evaluation metrics.
We assemble the largest collection of summaries generated by models trained on the CNN/DailyMail news dataset.
arXiv Detail & Related papers (2020-07-24T16:25:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.