PALATE: Peculiar Application of the Law of Total Expectation to Enhance the Evaluation of Deep Generative Models
- URL: http://arxiv.org/abs/2503.18462v1
- Date: Mon, 24 Mar 2025 09:06:45 GMT
- Title: PALATE: Peculiar Application of the Law of Total Expectation to Enhance the Evaluation of Deep Generative Models
- Authors: Tadeusz Dziarmaga, Marcin Kądziołka, Artur Kasymov, Marcin Mazur,
- Abstract summary: Deep generative models (DGMs) have caused a paradigm shift in the field of machine learning.<n>A comprehensive evaluation of these models that accounts for the trichotomy between fidelity, diversity, and novelty in generated samples remains a formidable challenge.<n>We propose PALATE, a novel enhancement to the evaluation of DGMs that addresses limitations of existing metrics.
- Score: 0.5499796332553708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep generative models (DGMs) have caused a paradigm shift in the field of machine learning, yielding noteworthy advancements in domains such as image synthesis, natural language processing, and other related areas. However, a comprehensive evaluation of these models that accounts for the trichotomy between fidelity, diversity, and novelty in generated samples remains a formidable challenge. A recently introduced solution that has emerged as a promising approach in this regard is the Feature Likelihood Divergence (FLD), a method that offers a theoretically motivated practical tool, yet also exhibits some computational challenges. In this paper, we propose PALATE, a novel enhancement to the evaluation of DGMs that addresses limitations of existing metrics. Our approach is based on a peculiar application of the law of total expectation to random variables representing accessible real data. When combined with the MMD baseline metric and DINOv2 feature extractor, PALATE offers a holistic evaluation framework that matches or surpasses state-of-the-art solutions while providing superior computational efficiency and scalability to large-scale datasets. Through a series of experiments, we demonstrate the effectiveness of the PALATE enhancement, contributing a computationally efficient, holistic evaluation approach that advances the field of DGMs assessment, especially in detecting sample memorization and evaluating generalization capabilities.
Related papers
- USDRL: Unified Skeleton-Based Dense Representation Learning with Multi-Grained Feature Decorrelation [24.90512145836643]
We introduce a Unified Skeleton-based Dense Representation Learning framework based on feature decorrelation.<n>We show that our approach significantly outperforms the current state-of-the-art (SOTA) approaches.
arXiv Detail & Related papers (2024-12-12T12:20:27Z) - Combining Entropy and Matrix Nuclear Norm for Enhanced Evaluation of Language Models [0.0]
Large language models (LLMs) continue to advance, the need for precise and efficient evaluation metrics becomes more pressing.
Traditional approaches, while informative, often face limitations in computational demands and interpretability.
In this paper, we introduce a novel hybrid evaluation method that integrates two established techniques.
arXiv Detail & Related papers (2024-10-18T14:03:52Z) - Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms [34.593772931446125]
monograph focuses on the exploration of various model-based and model-free approaches for Constrained within the context of average reward Markov Decision Processes (MDPs)
The primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs.
arXiv Detail & Related papers (2024-06-17T12:46:02Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble [11.542472900306745]
Multi-Comprehension (MC) Ensemble is proposed as a strategy to augment the Out-of-Distribution (OOD) feature representation field.
Our experimental results demonstrate the superior performance of the MC Ensemble strategy in OOD detection.
This underscores the effectiveness of our proposed approach in enhancing the model's capability to detect instances outside its training distribution.
arXiv Detail & Related papers (2024-03-24T18:43:04Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
In model-based optimisation (MBO) we are interested in using machine learning to design candidates that maximise some measure of reward with respect to a black box function called the (ground truth) oracle.
While an approximation to the ground oracle can be trained and used in place of it during model validation to measure the mean reward over generated candidates, the evaluation is approximate and vulnerable to adversarial examples.
This is encapsulated under our proposed evaluation framework which is also designed to measure extrapolation.
arXiv Detail & Related papers (2022-11-19T16:57:37Z) - SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark
for Semantic and Generative Capabilities [76.97949110580703]
We introduce SUPERB-SG, a new benchmark to evaluate pre-trained models across various speech tasks.
We use a lightweight methodology to test the robustness of representations learned by pre-trained models under shifts in data domain.
We also show that the task diversity of SUPERB-SG coupled with limited task supervision is an effective recipe for evaluating the generalizability of model representation.
arXiv Detail & Related papers (2022-03-14T04:26:40Z) - Approximate Bayesian inference from noisy likelihoods with Gaussian
process emulated MCMC [0.24275655667345403]
We model the log-likelihood function using a Gaussian process (GP)
The main methodological innovation is to apply this model to emulate the progression that an exact Metropolis-Hastings (MH) sampler would take.
The resulting approximate sampler is conceptually simple and sample-efficient.
arXiv Detail & Related papers (2021-04-08T17:38:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.