TENNs-PLEIADES: Building Temporal Kernels with Orthogonal Polynomials
- URL: http://arxiv.org/abs/2405.12179v3
- Date: Fri, 31 May 2024 18:29:13 GMT
- Title: TENNs-PLEIADES: Building Temporal Kernels with Orthogonal Polynomials
- Authors: Yan Ru Pei, Olivier Coenen,
- Abstract summary: We focus on interfacing these networks with event-based data to perform online classification and detection with low latency.
We experimented with three event-based benchmarks and obtained state-of-the-art results on all three by large margins with significantly smaller memory and compute costs.
- Score: 1.1970409518725493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a neural network named PLEIADES (PoLynomial Expansion In Adaptive Distributed Event-based Systems), belonging to the TENNs (Temporal Neural Networks) architecture. We focus on interfacing these networks with event-based data to perform online spatiotemporal classification and detection with low latency. By virtue of using structured temporal kernels and event-based data, we have the freedom to vary the sample rate of the data along with the discretization step-size of the network without additional finetuning. We experimented with three event-based benchmarks and obtained state-of-the-art results on all three by large margins with significantly smaller memory and compute costs. We achieved: 1) 99.59% accuracy with 192K parameters on the DVS128 hand gesture recognition dataset and 100% with a small additional output filter; 2) 99.58% test accuracy with 277K parameters on the AIS 2024 eye tracking challenge; and 3) 0.556 mAP with 576k parameters on the PROPHESEE 1 Megapixel Automotive Detection Dataset.
Related papers
- Differentiable architecture search with multi-dimensional attention for spiking neural networks [4.318876451929319]
Spiking Neural Networks (SNNs) have gained enormous popularity in the field of artificial intelligence.
The majority of SNN methods directly inherit the structure of Artificial Neural Networks (ANN)
We propose Multi-Attention Differentiable Architecture Search (MA-DARTS) to directly automate the search for the optimal network structure of SNNs.
arXiv Detail & Related papers (2024-11-01T07:18:32Z) - Severity classification of ground-glass opacity via 2-D convolutional
neural network and lung CT scans: a 3-day exploration [0.0]
Ground-glass opacity is a hallmark of numerous lung diseases, including patients with COVID19 and pneumonia, pulmonary fibrosis, and tuberculosis.
This note presents experimental results of a proof-of-concept framework that got implemented and tested over three days as driven by the third challenge entitled "COVID-19 Competition"
As part of the challenge requirement, the source code produced during the course of this exercise is posted at https://github.com/lisatwyw/cov19.
arXiv Detail & Related papers (2023-03-23T22:35:37Z) - Seizure Detection and Prediction by Parallel Memristive Convolutional
Neural Networks [2.0738462952016232]
We propose a low-latency parallel Convolutional Neural Network (CNN) architecture that has between 2-2,800x fewer network parameters compared to SOTA CNN architectures.
Our network achieves cross validation accuracy of 99.84% for epileptic seizure detection and 97.54% for epileptic seizure prediction.
The CNN component of our platform is estimated to consume approximately 2.791W of power while occupying an area of 31.255mm$2$ in a 22nm FDSOI CMOS process.
arXiv Detail & Related papers (2022-06-20T18:16:35Z) - Accelerating Training and Inference of Graph Neural Networks with Fast
Sampling and Pipelining [58.10436813430554]
Mini-batch training of graph neural networks (GNNs) requires a lot of computation and data movement.
We argue in favor of performing mini-batch training with neighborhood sampling in a distributed multi-GPU environment.
We present a sequence of improvements to mitigate these bottlenecks, including a performance-engineered neighborhood sampler.
We also conduct an empirical analysis that supports the use of sampling for inference, showing that test accuracies are not materially compromised.
arXiv Detail & Related papers (2021-10-16T02:41:35Z) - HYPER-SNN: Towards Energy-efficient Quantized Deep Spiking Neural
Networks for Hyperspectral Image Classification [5.094623170336122]
Spiking Neural Networks (SNNs) are trained with quantization-aware gradient descent to optimize weights, membrane leak, and firing thresholds.
During both training and inference, the analog pixel values of a HSI are directly applied to the input layer of the SNN without the need to convert to a spike-train.
We evaluate our proposal using three HSI datasets on a 3-D and a 3-D/2-D hybrid convolutional architecture.
arXiv Detail & Related papers (2021-07-26T06:17:10Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding.
We present a novel shallow neural network (SNN) in which features are extracted from the channel state information corresponding to WiFi subcarriers received on different antennas.
arXiv Detail & Related papers (2020-10-16T22:48:29Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
A range of neural architecture search (NAS) techniques are used to automatically learn two types of hyper- parameters of state-of-the-art factored time delay neural networks (TDNNs)
These include the DARTS method integrating architecture selection with lattice-free MMI (LF-MMI) TDNN training.
Experiments conducted on a 300-hour Switchboard corpus suggest the auto-configured systems consistently outperform the baseline LF-MMI TDNN systems.
arXiv Detail & Related papers (2020-07-17T08:32:11Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.