Optimistic Query Routing in Clustering-based Approximate Maximum Inner Product Search
- URL: http://arxiv.org/abs/2405.12207v1
- Date: Mon, 20 May 2024 17:47:18 GMT
- Title: Optimistic Query Routing in Clustering-based Approximate Maximum Inner Product Search
- Authors: Sebastian Bruch, Aditya Krishnan, Franco Maria Nardini,
- Abstract summary: We study the problem of routing in clustering-based maximum inner product search (MIPS)
We present a new framework that incorporates the moments of the distribution of inner products within each shard to optimistically estimate the maximum inner product.
- Score: 9.01394829787271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering-based nearest neighbor search is a simple yet effective method in which data points are partitioned into geometric shards to form an index, and only a few shards are searched during query processing to find an approximate set of top-$k$ vectors. Even though the search efficacy is heavily influenced by the algorithm that identifies the set of shards to probe, it has received little attention in the literature. This work attempts to bridge that gap by studying the problem of routing in clustering-based maximum inner product search (MIPS). We begin by unpacking existing routing protocols and notice the surprising contribution of optimism. We then take a page from the sequential decision making literature and formalize that insight following the principle of ``optimism in the face of uncertainty.'' In particular, we present a new framework that incorporates the moments of the distribution of inner products within each shard to optimistically estimate the maximum inner product. We then present a simple instance of our algorithm that uses only the first two moments to reach the same accuracy as state-of-the-art routers such as \scann by probing up to $50%$ fewer points on a suite of benchmark MIPS datasets. Our algorithm is also space-efficient: we design a sketch of the second moment whose size is independent of the number of points and in practice requires storing only $O(1)$ additional vectors per shard.
Related papers
- Query-Efficient Correlation Clustering with Noisy Oracle [17.11782578276788]
We introduce two novel formulations of online learning problems rooted in the paradigm of Pure Exploration in Combinatorial Multi-Armed Bandits (PE-CMAB)
We design algorithms that combine a sampling strategy with a classic approximation algorithm for correlation and study their theoretical guarantees.
Our results are the first examples of clustering-time algorithms that work for the case of PE-CMAB in which the underlying offline optimization problem is NP-hard.
arXiv Detail & Related papers (2024-02-02T13:31:24Z) - Group Testing for Accurate and Efficient Range-Based Near Neighbor Search for Plagiarism Detection [2.3814052021083354]
This work presents an adaptive group testing framework for the range-based high dimensional near neighbor search problem.
Our method efficiently marks each item in a database as neighbor or non-neighbor of a query point, based on a cosine distance threshold without exhaustive search.
We show that, using softmax-based features, our method achieves a more than ten-fold speed-up over exhaustive search with no loss of accuracy.
arXiv Detail & Related papers (2023-11-05T06:12:03Z) - Learning the Positions in CountSketch [49.57951567374372]
We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem.
In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries.
arXiv Detail & Related papers (2023-06-11T07:28:35Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum.
Some of the graphs airsing in this application are large, having hundreds of thousands of nodes and hundreds of millions of edges.
We develop a new local search algorithm, which is a metaheuristic in the greedy randomized adaptive search framework.
arXiv Detail & Related papers (2022-03-28T21:34:16Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Revisiting the Complexity Analysis of Conflict-Based Search: New
Computational Techniques and Improved Bounds [5.158632635415881]
State-of-the-art approach to computing optimal solutions is Conflict-Based Search (CBS)
We revisit the complexity analysis of CBS to provide tighter bounds on the algorithm's run-time in the worst-case.
arXiv Detail & Related papers (2021-04-18T07:46:28Z) - Clustering with Penalty for Joint Occurrence of Objects: Computational
Aspects [0.0]
The method of Hol'y, Sokol and vCern'y clusters objects based on their incidence in a large number of given sets.
The idea is to minimize the occurrence of multiple objects from the same cluster in the same set.
In the current paper, we study computational aspects of the method.
arXiv Detail & Related papers (2021-02-02T10:39:27Z) - Adversarial Examples for $k$-Nearest Neighbor Classifiers Based on
Higher-Order Voronoi Diagrams [69.4411417775822]
Adversarial examples are a widely studied phenomenon in machine learning models.
We propose an algorithm for evaluating the adversarial robustness of $k$-nearest neighbor classification.
arXiv Detail & Related papers (2020-11-19T08:49:10Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
We study the problem of clustering a set of items from binary user feedback.
We devise an algorithm with a minimal cluster recovery error rate.
For adaptive selection, we develop an algorithm inspired by the derivation of the information-theoretical error lower bounds.
arXiv Detail & Related papers (2019-10-14T09:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.