Clustering with Penalty for Joint Occurrence of Objects: Computational
Aspects
- URL: http://arxiv.org/abs/2102.01424v1
- Date: Tue, 2 Feb 2021 10:39:27 GMT
- Title: Clustering with Penalty for Joint Occurrence of Objects: Computational
Aspects
- Authors: Ond\v{r}ej Sokol and Vladim\'ir Hol\'y
- Abstract summary: The method of Hol'y, Sokol and vCern'y clusters objects based on their incidence in a large number of given sets.
The idea is to minimize the occurrence of multiple objects from the same cluster in the same set.
In the current paper, we study computational aspects of the method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The method of Hol\'y, Sokol and \v{C}ern\'y (Applied Soft Computing, 2017,
Vol. 60, p. 752-762) clusters objects based on their incidence in a large
number of given sets. The idea is to minimize the occurrence of multiple
objects from the same cluster in the same set. In the current paper, we study
computational aspects of the method. First, we prove that the problem of
finding the optimal clustering is NP-hard. Second, to numerically find a
suitable clustering, we propose to use the genetic algorithm augmented by a
renumbering procedure, a fast task-specific local search heuristic and an
initial solution based on a simplified model. Third, in a simulation study, we
demonstrate that our improvements of the standard genetic algorithm
significantly enhance its computational performance.
Related papers
- From Large to Small Datasets: Size Generalization for Clustering
Algorithm Selection [12.993073967843292]
We study a problem in a semi-supervised setting, with an unknown ground-truth clustering.
We introduce a notion of size generalization for clustering algorithm accuracy.
We use a subsample of as little as 5% of the data to identify which algorithm is best on the full dataset.
arXiv Detail & Related papers (2024-02-22T06:53:35Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
Clustering is a fundamental primitive in unsupervised learning.
Recent work has established lower bounds against the class of low-degree methods.
We show that, perhaps surprisingly, this particular clustering model textitdoes not exhibit a statistical-to-computational gap.
arXiv Detail & Related papers (2021-12-07T18:50:17Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
We present a new branch-and-bound algorithm for semi-supervised MSSC.
Background knowledge is incorporated as pairwise must-link and cannot-link constraints.
For the first time, the proposed global optimization algorithm efficiently manages to solve real-world instances up to 800 data points.
arXiv Detail & Related papers (2021-11-30T17:08:53Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - Certifying clusters from sum-of-norms clustering [13.747619681451875]
We present a clustering test that identifies and certifies the correct cluster assignment from an approximate solution.
We show the correct cluster assignment is guaranteed to be certified by a primal-dual path following algorithm after sufficiently many iterations.
arXiv Detail & Related papers (2020-06-19T20:26:26Z) - Probabilistic Partitive Partitioning (PPP) [0.0]
Clustering algorithms, in general, face two common problems.
They converge to different settings with different initial conditions.
The number of clusters has to be arbitrarily decided beforehand.
arXiv Detail & Related papers (2020-03-09T19:18:35Z) - Bi-objective Optimization of Biclustering with Binary Data [0.0]
Clustering consists of partitioning data objects into subsets called clusters according to some similarity criteria.
This paper addresses a quasi-clustering that allows overlapping of clusters, and which we link to biclustering.
Biclustering simultaneously groups the objects and features so that a specific group of objects has a special group of features.
arXiv Detail & Related papers (2020-02-09T21:49:26Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
arXiv Detail & Related papers (2020-01-06T23:33:31Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
We study the problem of clustering a set of items from binary user feedback.
We devise an algorithm with a minimal cluster recovery error rate.
For adaptive selection, we develop an algorithm inspired by the derivation of the information-theoretical error lower bounds.
arXiv Detail & Related papers (2019-10-14T09:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.