MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs
- URL: http://arxiv.org/abs/2410.04698v1
- Date: Mon, 7 Oct 2024 02:30:07 GMT
- Title: MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs
- Authors: Lei Wang, Shan Dong, Yuhui Xu, Hanze Dong, Yalu Wang, Amrita Saha, Ee-Peng Lim, Caiming Xiong, Doyen Sahoo,
- Abstract summary: MathHay is an automated benchmark designed to assess the long-context mathematical reasoning capabilities of LLMs.
We conduct extensive experiments on MathHay to assess the long-context mathematical reasoning abilities of eight top-performing models.
- Score: 61.74749961334557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent large language models (LLMs) have demonstrated versatile capabilities in long-context scenarios. Although some recent benchmarks have been developed to evaluate the long-context capabilities of LLMs, there is a lack of benchmarks evaluating the mathematical reasoning abilities of LLMs over long contexts, which is crucial for LLMs' application in real-world scenarios. In this paper, we introduce MathHay, an automated benchmark designed to assess the long-context mathematical reasoning capabilities of LLMs. Unlike previous benchmarks like Needle in a Haystack, which focus primarily on information retrieval within long texts, MathHay demands models with both information-seeking and complex mathematical reasoning abilities. We conduct extensive experiments on MathHay to assess the long-context mathematical reasoning abilities of eight top-performing LLMs. Even the best-performing model, Gemini-1.5-Pro-002, still struggles with mathematical reasoning over long contexts, achieving only 51.26% accuracy at 128K tokens. This highlights the significant room for improvement on the MathHay benchmark.
Related papers
- HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics [1.5716764919736026]
We introduce HARDMath, a dataset featuring challenging applied mathematics problems that require analytical approximation techniques.
Our framework auto-generates a large number of problems with solutions validated against numerical ground truths.
We evaluate both open- and closed-source LLMs on HARDMath-mini, a sub-sampled test set of 366 problems, as well as on 40 word problems formulated in applied science contexts.
arXiv Detail & Related papers (2024-10-13T20:09:41Z) - Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On [55.449818944278526]
We introduce the Skywork-Math model series, supervised fine-tuned (SFT) on common 7B language models.
Skywork-Math 7B has achieved impressive accuracies of 51.2% on the competition-level MATH benchmark.
We provide several practical takeaways to enhance math reasoning abilities in LLMs for both research and industry applications.
arXiv Detail & Related papers (2024-07-11T09:56:51Z) - LLMs Are Not Intelligent Thinkers: Introducing Mathematical Topic Tree Benchmark for Comprehensive Evaluation of LLMs [8.89259409245068]
Large language models (LLMs) demonstrate impressive capabilities in mathematical reasoning.
We present the Mathematical Topics Tree (MaTT) benchmark, a challenging and structured benchmark that offers 1,958 questions.
We find that the most advanced model, GPT-4, achieved a mere 54% accuracy in a multiple-choice scenario.
arXiv Detail & Related papers (2024-06-07T18:21:26Z) - MathChat: Benchmarking Mathematical Reasoning and Instruction Following in Multi-Turn Interactions [58.57255822646756]
This paper introduces MathChat, a benchmark designed to evaluate large language models (LLMs) across a broader spectrum of mathematical tasks.
We evaluate the performance of various SOTA LLMs on the MathChat benchmark, and we observe that while these models excel in single turn question answering, they significantly underperform in more complex scenarios.
We develop MathChat sync, a synthetic dialogue based math dataset for LLM finetuning, focusing on improving models' interaction and instruction following capabilities in conversations.
arXiv Detail & Related papers (2024-05-29T18:45:55Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBench is a new benchmark that rigorously assesses the mathematical capabilities of large language models.
MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills.
arXiv Detail & Related papers (2024-05-20T17:52:29Z) - Can LLMs Master Math? Investigating Large Language Models on Math Stack Exchange [25.419977967846144]
Large Language Models (LLMs) have demonstrated exceptional capabilities in various natural language tasks.
This paper explores the current limitations of LLMs in navigating complex mathematical problem-solving.
arXiv Detail & Related papers (2024-03-30T12:48:31Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - InternLM-Math: Open Math Large Language Models Toward Verifiable Reasoning [98.53491178426492]
We open-source our math reasoning LLMs InternLM-Math which is continue pre-trained from InternLM2.
We unify chain-of-thought reasoning, reward modeling, formal reasoning, data augmentation, and code interpreter in a unified seq2seq format.
Our pre-trained model achieves 30.3 on the MiniF2F test set without fine-tuning.
arXiv Detail & Related papers (2024-02-09T11:22:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.