論文の概要: Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices
- arxiv url: http://arxiv.org/abs/2405.12211v1
- Date: Mon, 20 May 2024 17:55:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 12:35:30.383864
- Title: Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices
- Title(参考訳): Slicedit:時空間スライスを用いたテキストと画像の拡散モデルによるゼロショットビデオ編集
- Authors: Nathaniel Cohen, Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, Tomer Michaeli,
- Abstract要約: Sliceditは、事前訓練されたT2I拡散モデルを用いて、空間スライスと時間スライスの両方を処理するテキストベースのビデオ編集方法である。
本手法は,対象のテキストに付着しながら,オリジナル映像の構造と動きを保持するビデオを生成する。
- 参考スコア(独自算出の注目度): 19.07572422897737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image (T2I) diffusion models achieve state-of-the-art results in image synthesis and editing. However, leveraging such pretrained models for video editing is considered a major challenge. Many existing works attempt to enforce temporal consistency in the edited video through explicit correspondence mechanisms, either in pixel space or between deep features. These methods, however, struggle with strong nonrigid motion. In this paper, we introduce a fundamentally different approach, which is based on the observation that spatiotemporal slices of natural videos exhibit similar characteristics to natural images. Thus, the same T2I diffusion model that is normally used only as a prior on video frames, can also serve as a strong prior for enhancing temporal consistency by applying it on spatiotemporal slices. Based on this observation, we present Slicedit, a method for text-based video editing that utilizes a pretrained T2I diffusion model to process both spatial and spatiotemporal slices. Our method generates videos that retain the structure and motion of the original video while adhering to the target text. Through extensive experiments, we demonstrate Slicedit's ability to edit a wide range of real-world videos, confirming its clear advantages compared to existing competing methods. Webpage: https://matankleiner.github.io/slicedit/
- Abstract(参考訳): テキスト・トゥ・イメージ(T2I)拡散モデルは画像合成と編集において最先端の結果が得られる。
しかし、このような事前訓練されたモデルをビデオ編集に活用することは大きな課題であると考えられる。
既存の多くの作品では、編集されたビデオの時間的一貫性を、ピクセル空間内または深い特徴間の明示的な対応機構によって強制しようとする。
しかし、これらの手法は強い非剛性運動に苦しむ。
本稿では,自然映像の時空間スライスが自然画像に類似した特徴を示すという観察に基づく,根本的に異なるアプローチを提案する。
したがって、通常ビデオフレーム上でのみ使用される同じT2I拡散モデルは、時空間スライスにそれを適用することで時間的一貫性を高めるための強い先行として機能する。
そこで本研究では,事前学習したT2I拡散モデルを用いて時空間スライスと時空間スライスの両方を処理するテキストベースのビデオ編集手法であるSliceditを提案する。
本手法は,対象のテキストに付着しながら,オリジナル映像の構造と動きを保持するビデオを生成する。
広範な実験を通じて,既存の競合する手法と比較して,Sliceditが幅広い実世界の動画を編集できることを実証し,その優位性を確認した。
Webページ: https://matankleiner.github.io/slicedit/
関連論文リスト
- COVE: Unleashing the Diffusion Feature Correspondence for Consistent Video Editing [57.76170824395532]
ビデオ編集は新たな課題であり、現在のほとんどの手法では、ソースビデオを編集するために、事前訓練されたテキスト・トゥ・イメージ(T2I)拡散モデルを採用している。
我々は,高品質で一貫したビデオ編集を実現するために,COVE(Cor correspondingence-guided Video Editing)を提案する。
COVEは、追加のトレーニングや最適化を必要とせずに、事前訓練されたT2I拡散モデルにシームレスに統合することができる。
論文 参考訳(メタデータ) (2024-06-13T06:27:13Z) - Investigating the Effectiveness of Cross-Attention to Unlock Zero-Shot Editing of Text-to-Video Diffusion Models [52.28245595257831]
クロスアテンションガイダンスは、ビデオを編集する上で有望なアプローチだ。
現行のT2Vモデルの限界にもかかわらず、動画編集にはクロスアテンションガイダンスが有望なアプローチであることを示す。
論文 参考訳(メタデータ) (2024-04-08T13:40:01Z) - MagicProp: Diffusion-based Video Editing via Motion-aware Appearance
Propagation [74.32046206403177]
MagicPropは、ビデオ編集プロセスを、外観編集とモーション対応の外観伝搬という2つのステージに分割する。
第一段階では、MagicPropは入力ビデオから単一のフレームを選択し、フレームの内容やスタイルを変更するために画像編集技術を適用する。
第2段階では、MagicPropは編集されたフレームを外観参照として使用し、自動回帰レンダリングアプローチを使用して残りのフレームを生成する。
論文 参考訳(メタデータ) (2023-09-02T11:13:29Z) - StableVideo: Text-driven Consistency-aware Diffusion Video Editing [24.50933856309234]
拡散に基づく手法は、リアルな画像やビデオを生成することができるが、ビデオ内の既存のオブジェクトを編集するのに苦労し、その外観は時間の経過とともに保たれる。
本稿では、既存のテキスト駆動拡散モデルへの時間的依存を導入し、編集対象に対して一貫した外観を生成する。
我々は,この機構,すなわちStableVideoに基づくテキスト駆動のビデオ編集フレームワークを構築し,一貫性を意識したビデオ編集を実現する。
論文 参考訳(メタデータ) (2023-08-18T14:39:16Z) - TokenFlow: Consistent Diffusion Features for Consistent Video Editing [27.736354114287725]
本稿では,テキスト駆動ビデオ編集作業において,テキスト間拡散モデルのパワーを利用するフレームワークを提案する。
提案手法は,入力ビデオの空間的レイアウトと動きを保ちながら,ターゲットテキストに付着した高品質な映像を生成する。
我々のフレームワークは、トレーニングや微調整を一切必要とせず、市販のテキスト・ツー・イメージ編集手法と連携して動作する。
論文 参考訳(メタデータ) (2023-07-19T18:00:03Z) - VidEdit: Zero-Shot and Spatially Aware Text-Driven Video Editing [18.24307442582304]
ゼロショットテキストベースのビデオ編集のための新しい方法であるVidEditを紹介する。
実験の結果,VidEditはDAVISデータセット上で最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2023-06-14T19:15:49Z) - Zero-Shot Video Editing Using Off-The-Shelf Image Diffusion Models [68.31777975873742]
ビデオ編集の最近の試みは、トレーニングに大量のテキスト・ビデオデータと計算資源を必要とする。
我々は、ゼロショットビデオ編集のためのシンプルで効果的な方法であるvid2vid-zeroを提案する。
実験と分析は、現実世界のビデオの属性、主題、場所などの編集において有望な結果を示す。
論文 参考訳(メタデータ) (2023-03-30T17:59:25Z) - FateZero: Fusing Attentions for Zero-shot Text-based Video Editing [104.27329655124299]
本研究では,FateZeroを提案する。FateZeroは,実世界のビデオに対して,プロンプトごとのトレーニングや使用専用のマスクを使わずに,ゼロショットのテキストベースの編集手法である。
本手法は、ゼロショットテキスト駆動型ビデオスタイルと、訓練されたテキスト・ツー・イメージモデルからローカル属性を編集する機能を示す最初の方法である。
論文 参考訳(メタデータ) (2023-03-16T17:51:13Z) - Edit-A-Video: Single Video Editing with Object-Aware Consistency [49.43316939996227]
本稿では,事前訓練されたTTIモデルと単一のテキスト,ビデオ>ペアのみを付与したビデオ編集フレームワークを提案する。
本フレームワークは,(1)時間モジュールチューニングを付加して2Dモデルを3Dモデルに膨らませること,(2)原動画をノイズに反転させ,対象のテキストプロンプトとアテンションマップインジェクションで編集すること,の2段階からなる。
各種のテキスト・ビデオに対して広範な実験結果を示し,背景整合性,テキストアライメント,ビデオ編集品質の点で,ベースラインに比べて提案手法の優位性を示す。
論文 参考訳(メタデータ) (2023-03-14T14:35:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。