Emergent Majorana metal from a chiral spin liquid
- URL: http://arxiv.org/abs/2405.12278v1
- Date: Mon, 20 May 2024 18:00:01 GMT
- Title: Emergent Majorana metal from a chiral spin liquid
- Authors: Penghao Zhu, Shi Feng, Kang Wang, Tao Xiang, Nandini Trivedi,
- Abstract summary: We propose a novel mechanism to explain the emergence of an intermediate gapless spin liquid phase (IGP) in the antiferromagnetic Kitaev model.
We show that the Majorana spectral function captures the dynamical spin and dimer correlations obtained by the infinite Projectedangled Pair States (iPEPS) an Entsatz.
- Score: 50.56734933757366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel mechanism to explain the emergence of an intermediate gapless spin liquid phase (IGP) in the antiferromagnetic Kitaev model in an externally applied magnetic field, sandwiched between the well-known gapped chiral spin liquid (CSL) and the gapped partially polarized (PP) phase. We propose in moderate fields $\pi$-fluxes nucleate in the ground state and can trap Majorana zero modes. As these fluxes proliferate with increasing field, the Majorana zero modes overlap creating an emergent Majorana metallic state with a `Fermi surface' at zero energy. We further show that the Majorana spectral function captures the dynamical spin and dimer correlations obtained by the infinite Projected Entangled Pair States (iPEPS) ansatz. We discuss the implications of our results for candidate Kitaev materials.
Related papers
- Cavity Control of Topological Qubits: Fusion Rule, Anyon Braiding and Majorana-Schrödinger Cat States [39.58317527488534]
We investigate the impact of introducing a local cavity within the center of a topological chain.
This cavity induces a scissor-like effect that bisects the chain, liberating Majorana zero modes (MZMs) within the bulk.
By leveraging the symmetry properties of fermion modes within a two-site cavity, we propose a novel method for generating MZM-polariton Schr"odinger cat states.
arXiv Detail & Related papers (2024-09-06T18:00:00Z) - Fractional Wannier Orbitals and Tight-Binding Gauge Fields for Kitaev Honeycomb Superlattices with Flat Majorana Bands [0.19116784879310028]
Fractional excitations offer vast potential for both fundamental physics and quantum technologies.
Here, we investigate the evolution of low-energy Majorana dispersions across various crystalline phases of the pi-flux in the Kitaev spin model on a honeycomb lattice.
We identify conditions under which this superexchange interaction acts as a Z2 gauge field, governing the tight-binding hopping of Majorana Wannier orbitals.
arXiv Detail & Related papers (2024-07-17T13:44:39Z) - Magnetic field effects on the Kitaev model coupled to environment [0.0]
An effective non-Hermitian Kitaev model was shown to give rise to a gapless spin liquid state with exceptional points in the Majorana dispersions.
We show that the exceptional points remain gapless up to a finite critical magnetic field, in stark contrast to the Hermitian case where an infinitesimal field opens a gap.
arXiv Detail & Related papers (2024-02-08T09:51:37Z) - Engineering and probing non-Abelian chiral spin liquids using
periodically driven ultracold atoms [0.0]
We propose a scheme to implement Kitaev's honeycomb model with cold atoms, based on a periodic (Floquet) drive.
We derive the effective Hamiltonian to leading order in the inverse-frequency expansion, and show that the drive opens up a topological gap in the spectrum.
We address the challenge of probing the physics of Majorana fermions, while having only access to the original composite spin degrees of freedom.
arXiv Detail & Related papers (2022-11-17T18:51:49Z) - A Platform for Braiding Majorana Modes with Magnetic Skyrmions [0.0]
We propose magnetic multilayer heterostructures with on-chip microwave cavity readout as a novel platform for initializing, braiding and reading out Majorana modes.
We show that our nucleation and braiding scheme can be effectively realized with a variety of existing options for magnetic and superconducting layers.
arXiv Detail & Related papers (2022-10-19T15:25:58Z) - Strong-coupling emergence of dark states in XX central spin models [77.34726150561087]
It was recently shown that the XX central spin model is integrable in the presence of a magnetic field to the plane in which the coupling exists.
We show that, provided the coupling is strong enough, dark states can actually be found even in the presence of an in-plane magnetic field.
arXiv Detail & Related papers (2021-12-17T15:12:02Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Majorana-like oscillation for edge states in one-dimensional topological
chain with dissipative couplings [6.672381426817075]
Majorana modes with near zero energy play an important role for ascertaining Majorana fermions.
We show that common environments shared by each pair of the nearest neighbour sites in the Su-Schrieffer-Heeger chain can result in dissipative couplings.
The controllable topology parameter of the SSHc plays the role of the magnetic field in the nanowire for controlling Majorana oscillation.
arXiv Detail & Related papers (2021-09-10T06:46:05Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.