論文の概要: Theory of fractional quantum Hall liquids coupled to quantum light and emergent graviton-polaritons
- arxiv url: http://arxiv.org/abs/2405.12292v2
- Date: Sat, 09 Nov 2024 11:53:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:06.599153
- Title: Theory of fractional quantum Hall liquids coupled to quantum light and emergent graviton-polaritons
- Title(参考訳): 量子光と創発性グラビトン偏光子に結合した分数量子ホール液体の理論
- Authors: Zeno Bacciconi, Hernan Xavier, Iacopo Carusotto, Titas Chanda, Marcello Dalmonte,
- Abstract要約: 有限電場勾配を持つ単一モードキャビティにおける$nu=1/3$ラウリン状態のダイナミクスについて検討する。
FQH状態の位相的シグネチャは、非局所変調空洞真空変動に対して頑健である。
FQH相の中で低エネルギー励起スペクトルを探索することにより、新しい中性準粒子であるグラビトン・ポラリトンを同定する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent breakthrough experiments have demonstrated how it is now possible to explore the dynamics of quantum Hall states interacting with quantum electromagnetic cavity fields. While the impact of strongly coupled non-local cavity modes on integer quantum Hall physics has been recently addressed, its effects on fractional quantum Hall (FQH) liquids -- and, more generally, fractionalized states of matter -- remain largely unexplored. In this work, we develop a theoretical framework for the understanding of FQH states coupled to quantum light. In particular, combining analytical arguments with tensor network simulations, we study the dynamics of a $\nu=1/3$ Laughlin state in a single-mode cavity with finite electric field gradients. We find that the topological signatures of the FQH state remain robust against the non-local cavity vacuum fluctuations, as indicated by the endurance of the quantized Hall resistivity. The entanglement spectra, however, carry direct fingerprints of light-matter entanglement and topology, revealing peculiar polaritonic replicas of the $U(1)$ counting. As a further response to cavity fluctuations, we also find a squeezed FQH geometry, encoded in long-wavelength correlations. By exploring the low-energy excited spectrum inside the FQH phase, we identify a new neutral quasiparticle, the graviton-polariton, arising from the hybridization between quadrupolar FQH collective excitations (known as gravitons) and light. Pushing the light-matter interaction to ultra-strong coupling regimes we find other two important effects, a cavity vacuum-induced Stark shift for charged quasi-particles and a potential instability towards a density modulated stripe phase, competing against the phase separation driven by the Stark shift. Finally, we discuss the experimental implications of our findings and possible extension of our results to more complex scenarios.
- Abstract(参考訳): 最近のブレークスルー実験は、量子電磁空洞場と相互作用する量子ホール状態のダイナミクスを探索する方法を実証している。
強く結合した非局所キャビティモードが整数量子ホール物理学に与える影響は近年研究されているが、分数量子ホール(FQH)液体、そしてより一般的には、物質の分数化状態に対する影響は未解明のままである。
本研究では、量子光に結合したFQH状態の理解のための理論的枠組みを開発する。
特に、解析的議論とテンソルネットワークシミュレーションを組み合わせることで、単一モードキャビティにおける$\nu=1/3$ Laughlin状態と有限電場勾配のダイナミクスを研究する。
FQH状態の位相的シグネチャは、量子化されたホール比抵抗の持続性によって示されるように、非局所的な空洞真空変動に対して頑健である。
しかし、エンタングルメントスペクトルは、光物質の絡み合いとトポロジーの直接指紋を持ち、U(1)$カウントの独特な極性的なレプリカが明らかになる。
キャビティ変動に対するさらなる応答として、長波長相関で符号化された圧縮されたFQH幾何も見出す。
FQH相内の低エネルギー励起スペクトルを探索することにより、四極性FQH集団励起(グラビトンとして知られる)と光のハイブリッド化から生じる新しい中性準粒子、グラビトン・ポラリトンを同定する。
超強結合系に光物質相互作用をプッシュすると、荷電準粒子に対する空洞真空誘起スタークシフトと密度変調ストライプ相への潜在的な不安定性という2つの重要な効果が得られ、スタークシフトによって引き起こされる相分離と競合する。
最後に,本研究の結果の実験的意義と,より複雑なシナリオへの拡張の可能性について論じる。
関連論文リスト
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
キャビティ量子電磁力学(QED)では、エミッタと共振器が結合し、量子光-物質相互作用の精密な研究を可能にする。
ここでは、超低温8,8$Sr原子のアンサンブルを用いて、CRFモデルで予測される連続超ラジカル相転移の観測を行う。
我々の観測は、量子状態を生成するために予測された駆動散逸系のより細かい制御への第一歩である。
論文 参考訳(メタデータ) (2024-08-20T18:00:00Z) - Dynamical Spectral Response of Fractonic Quantum Matter [0.0]
拘束されたボース・ハッバードモデルの1次元における低エネルギー励起について検討する。
強い結合結果と相反するギャップ付き励起の存在を示す。
論文 参考訳(メタデータ) (2023-10-24T18:00:01Z) - The strongly driven Fermi polaron [49.81410781350196]
準粒子は物質の創発的な励起であり、量子多体系の理解の多くを弱めている。
我々は、均一な量子ガスのクリーンな設定と高速なラジオ周波数制御を利用して、フェルミ・ポーラロンを操る。
2つの内部状態間のラビ振動から引き起こされたポーラロンの崩壊速度と準粒子残基を測定する。
論文 参考訳(メタデータ) (2023-08-10T17:59:51Z) - Local Fluctuations in Cavity Control of Ferroelectricity [0.0]
2つの高品質金属鏡の間に挟まれた量子パラ誘電体について検討する。
横モードの連続体を含むと、空洞は強誘電性相関を抑える。
我々の結果は、一般的な形式主義に基づいており、広く適用されることが期待されている。
論文 参考訳(メタデータ) (2023-01-05T02:55:52Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
本研究では,Landau-Zenerモデルにおける過渡ダイナミクスを,Landau-Zener速度の関数として検討する。
我々の実験は、工学的なボソニックモードスペクトルに結合した量子ビットを用いたより複雑なシミュレーションの道を開いた。
論文 参考訳(メタデータ) (2022-11-26T15:04:11Z) - Realization of a fractional quantum Hall state with ultracold atoms [0.0]
エンブレマティック・インスタンスは分数量子ホール状態であり、磁場と強い相互作用の相互作用によって分数電荷の準粒子が生じる。
ここでは、光学格子中の超低温原子を持つ分数量子ホール(FQH)状態を実現する。
論文 参考訳(メタデータ) (2022-10-19T22:48:43Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
ウルトラストロングのハイブリッド量子系、さらにディープストロングでは、カップリングレジームはエキゾチックな物理現象を示す。
我々は, ラムド素子超伝導共振器の磁場によって誘起されるアシラリーXmon人工原子のパリティ対称性の破れを実験的に観察した。
この結果は、深い結合状態にある新しい量子真空効果を実験的に探求する方法を開く。
論文 参考訳(メタデータ) (2022-09-13T06:14:08Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
量子電気力学アーキテクチャにおける二重超伝導キャビティにおける動的カシミール効果について検討した。
壁が小さな振幅で調和して振動する際の光子の生成について検討する。
論文 参考訳(メタデータ) (2022-07-18T16:43:47Z) - Chiral Cavity Quantum Electrodynamics [0.0]
ハーパーホフスタッタートポロジカル格子のトポロジカル真空におけるトランスモン量子ビットの空洞量子電磁力学を初めて探求する。
我々は, この格子の個々のバルクモードとエッジモードを分光的に分解し, 励起トランスモンと各モード間の真空励起ラビ振動を検出し, それによって, 合成真空誘起ランブシフトを測定する。
論文 参考訳(メタデータ) (2021-09-09T22:26:36Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
固有状態熱化仮説(ETH)は、閉量子多体系の平衡へのアプローチの普遍的なメカニズムを提供する。
本稿では, ゆらぎ・散逸関係の出現を観測し, 量子シミュレータのフルETHを探索する理論に依存しない経路を提案する。
我々の研究は、量子シミュレータにおける熱化を特徴づける理論に依存しない方法を示し、凝縮物質ポンプ-プローブ実験をシミュレーションする方法を舗装する。
論文 参考訳(メタデータ) (2020-07-20T18:00:02Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
単一励起部分空間における導波路と移動量子エミッタで構成されるシステムについて検討する。
まず、単一移動量子エミッタからの単一光子散乱を特徴付け、非相互伝達とリコイル誘起の量子エミッタ運動エネルギーの低減の両方を示す。
論文 参考訳(メタデータ) (2020-03-20T12:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。