AtomGS: Atomizing Gaussian Splatting for High-Fidelity Radiance Field
- URL: http://arxiv.org/abs/2405.12369v3
- Date: Sat, 09 Nov 2024 19:51:43 GMT
- Title: AtomGS: Atomizing Gaussian Splatting for High-Fidelity Radiance Field
- Authors: Rong Liu, Rui Xu, Yue Hu, Meida Chen, Andrew Feng,
- Abstract summary: 3D Gaussian Splatting (3DGS) has recently advanced radiance field reconstruction by offering superior capabilities for novel view synthesis and real-time rendering speed.
We introduce AtomGS, consisting of Atomized Proliferation and Geometry-Guided Optimization.
Our evaluation shows that AtomGS outperforms existing state-of-the-art methods in rendering quality.
- Score: 12.025400772749913
- License:
- Abstract: 3D Gaussian Splatting (3DGS) has recently advanced radiance field reconstruction by offering superior capabilities for novel view synthesis and real-time rendering speed. However, its strategy of blending optimization and adaptive density control might lead to sub-optimal results; it can sometimes yield noisy geometry and blurry artifacts due to prioritizing optimizing large Gaussians at the cost of adequately densifying smaller ones. To address this, we introduce AtomGS, consisting of Atomized Proliferation and Geometry-Guided Optimization. The Atomized Proliferation constrains ellipsoid Gaussians of various sizes into more uniform-sized Atom Gaussians. The strategy enhances the representation of areas with fine features by placing greater emphasis on densification in accordance with scene details. In addition, we proposed a Geometry-Guided Optimization approach that incorporates an Edge-Aware Normal Loss. This optimization method effectively smooths flat surfaces while preserving intricate details. Our evaluation shows that AtomGS outperforms existing state-of-the-art methods in rendering quality. Additionally, it achieves competitive accuracy in geometry reconstruction and offers a significant improvement in training speed over other SDF-based methods. More interactive demos can be found in our website (https://rongliu-leo.github.io/AtomGS/).
Related papers
- Mini-Splatting2: Building 360 Scenes within Minutes via Aggressive Gaussian Densification [4.733612131945549]
Mini-Splatting2 achieves a balanced trade-off among optimization time, the number of Gaussians, and rendering quality.
Our work sets the stage for more efficient, high-quality 3D scene modeling in real-world applications.
arXiv Detail & Related papers (2024-11-19T11:47:40Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2 is a novel approach for large-scale scene reconstruction.
We implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence.
Our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs.
arXiv Detail & Related papers (2024-11-01T17:59:31Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) has proven to be highly effective in novel view synthesis, achieving high-quality and real-time rendering.
Our work introduces a Chamfer distance error comparable to NeuraLangelo on the DTU dataset and maintains similar computational efficiency as the original 3D GS methods.
arXiv Detail & Related papers (2024-06-03T15:56:58Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.