Quantum-tailored machine-learning characterization of a superconducting
qubit
- URL: http://arxiv.org/abs/2106.13126v1
- Date: Thu, 24 Jun 2021 15:58:57 GMT
- Title: Quantum-tailored machine-learning characterization of a superconducting
qubit
- Authors: \'Elie Genois, Jonathan A. Gross, Agustin Di Paolo, Noah J. Stevenson,
Gerwin Koolstra, Akel Hashim, Irfan Siddiqi and Alexandre Blais
- Abstract summary: We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
- Score: 50.591267188664666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) is a promising approach for performing challenging
quantum-information tasks such as device characterization, calibration and
control. ML models can train directly on the data produced by a quantum device
while remaining agnostic to the quantum nature of the learning task. However,
these generic models lack physical interpretability and usually require large
datasets in order to learn accurately. Here we incorporate features of quantum
mechanics in the design of our ML approach to characterize the dynamics of a
quantum device and learn device parameters. This physics-inspired approach
outperforms physics-agnostic recurrent neural networks trained on numerically
generated and experimental data obtained from continuous weak measurement of a
driven superconducting transmon qubit. This demonstration shows how leveraging
domain knowledge improves the accuracy and efficiency of this characterization
task, thus laying the groundwork for more scalable characterization techniques.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Training-efficient density quantum machine learning [2.918930150557355]
Quantum machine learning requires powerful, flexible and efficiently trainable models.
We present density quantum neural networks, a learning model incorporating randomisation over a set of trainable unitaries.
arXiv Detail & Related papers (2024-05-30T16:40:28Z) - Quantum circuit synthesis with diffusion models [0.6554326244334868]
We use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation.
We steer the model to produce desired quantum operations within gate-based quantum circuits.
We envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.
arXiv Detail & Related papers (2023-11-03T17:17:08Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Improved Tomographic Estimates by Specialised Neural Networks [0.0]
We show that a neural network (NN) can improve the tomographic estimate of parameters by including a convolutional stage.
We demonstrate that a stable and reliable operation is achievable by training the network only with simulated data.
arXiv Detail & Related papers (2022-11-21T17:15:23Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Direct parameter estimations from machine-learning enhanced quantum
state tomography [3.459382629188014]
Machine-learning enhanced quantum state tomography (QST) has demonstrated its advantages in extracting complete information about the quantum states.
We develop a high-performance, lightweight, and easy-to-install supervised characteristic model by generating the target parameters directly.
Such a characteristic model-based ML-QST can avoid the problem of dealing with large Hilbert space, but keep feature extractions with high precision.
arXiv Detail & Related papers (2022-03-30T15:16:02Z) - Robustly learning the Hamiltonian dynamics of a superconducting quantum processor [0.5564835829075486]
We robustly estimate the free Hamiltonian parameters of bosonic excitations in a superconducting-qubit analog quantum simulator.
Our results constitute an accurate implementation of a dynamical quantum simulation.
arXiv Detail & Related papers (2021-08-18T18:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.