論文の概要: A Unified Linear Programming Framework for Offline Reward Learning from Human Demonstrations and Feedback
- arxiv url: http://arxiv.org/abs/2405.12421v2
- Date: Mon, 3 Jun 2024 23:23:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 09:02:44.732453
- Title: A Unified Linear Programming Framework for Offline Reward Learning from Human Demonstrations and Feedback
- Title(参考訳): オフラインリワード学習のための統一線形プログラミングフレームワーク
- Authors: Kihyun Kim, Jiawei Zhang, Asuman Ozdaglar, Pablo A. Parrilo,
- Abstract要約: Inverse Reinforcement Learning (IRL) と Reinforcement Learning from Human Feedback (RLHF) は報酬学習における重要な方法論である。
本稿では,オフライン報酬学習に適した新しい線形プログラミング(LP)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.578074497549894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse Reinforcement Learning (IRL) and Reinforcement Learning from Human Feedback (RLHF) are pivotal methodologies in reward learning, which involve inferring and shaping the underlying reward function of sequential decision-making problems based on observed human demonstrations and feedback. Most prior work in reward learning has relied on prior knowledge or assumptions about decision or preference models, potentially leading to robustness issues. In response, this paper introduces a novel linear programming (LP) framework tailored for offline reward learning. Utilizing pre-collected trajectories without online exploration, this framework estimates a feasible reward set from the primal-dual optimality conditions of a suitably designed LP, and offers an optimality guarantee with provable sample efficiency. Our LP framework also enables aligning the reward functions with human feedback, such as pairwise trajectory comparison data, while maintaining computational tractability and sample efficiency. We demonstrate that our framework potentially achieves better performance compared to the conventional maximum likelihood estimation (MLE) approach through analytical examples and numerical experiments.
- Abstract(参考訳): Inverse Reinforcement Learning (IRL) と Reinforcement Learning from Human Feedback (RLHF) は報酬学習において重要な方法論であり、人間の実演とフィードバックに基づいて、連続的な意思決定問題の報酬関数を推論・形成する。
報奨学習におけるほとんどの以前の作業は、決定や選好モデルに関する事前の知識や仮定に依存しており、堅牢性の問題につながる可能性がある。
そこで本研究では,オフライン報酬学習に適した新しい線形プログラミング(LP)フレームワークを提案する。
本フレームワークは,オンライン探索を使わずに事前に収集した軌道を用いて,設計したLPの一次双対最適条件から設定した有望な報酬を推定し,提案可能なサンプル効率の最適性保証を提供する。
我々のLPフレームワークはまた、計算的トラクタビリティとサンプル効率を維持しながら、ペアの軌道比較データなど、報酬関数を人間のフィードバックと整合させることができる。
解析例と数値実験により,従来の最大推定法(MLE)と比較して,本フレームワークは性能が向上する可能性が示唆された。
関連論文リスト
- Preference Optimization as Probabilistic Inference [21.95277469346728]
本稿では,好ましくない例や好ましくない例を活用できる手法を提案する。
この柔軟性により、生成言語モデルをトレーニングするなど、さまざまな形式のフィードバックとモデルでシナリオに適用することが可能になります。
論文 参考訳(メタデータ) (2024-10-05T14:04:03Z) - Provably Efficient Interactive-Grounded Learning with Personalized Reward [44.64476717773815]
インタラクティブ・グラウンドド・ラーニング(Interactive-Grounded Learning, IGL)は、学習者が観測不能な報酬を最大化することを目的とした強力なフレームワークである。
我々は、実現可能性の下でサブ線形後悔を伴う最初の証明可能な効率のよいアルゴリズムを提供する。
本稿では,探索-テーマ-露光に基づく2つのアルゴリズムと,逆ギャップ重み付けに基づく2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-31T08:21:09Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
我々は、報酬モデルと政策モデルを同時に構築するために、逆強化学習(IRL)技術を活用することを提案する。
提案アルゴリズムはIRL問題の定常解に収束することを示す。
その結果,アライメントプロセス全体を通じて報酬学習を活用することは有益であることが示唆された。
論文 参考訳(メタデータ) (2024-05-28T07:11:05Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
本稿では、複数の応答のオフライン報酬を合理化されたリストワイズフレームワークに組み込む、勾配に基づく報酬最適化手法を提案する。
LIREは実装が簡単で、最小限のパラメータチューニングを必要とし、ペアワイズパラダイムとシームレスに整合する。
実験の結果,LIREは対話タスクや要約タスクのベンチマークにおいて,既存のメソッドよりも一貫して優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-22T10:21:50Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
本稿では,この問題を解決するために,事前制約に基づくリワードモデル(PCRM)のトレーニング手法を提案する。
PCRMは、前回の制約、特に各比較ペアの出力間の長さ比とコサイン類似性を、最適化の規模を調節しスコアマージンを制御するための報酬モデルトレーニングに組み入れている。
実験結果から,PCRMは報酬スコアのスケーリングを効果的に抑制することによりアライメント性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-01T07:49:11Z) - Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
我々は、OPEのサンプル効率を人間の好みで研究し、その統計的保証を確立する。
ReLUネットワークのサイズを適切に選択することにより、マルコフ決定過程において任意の低次元多様体構造を活用できることが示される。
論文 参考訳(メタデータ) (2023-10-16T16:27:06Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
PbRL(Preference-based Reinforcement Learning)は、RLエージェントが、軌道上のペアワイドな嗜好に基づくフィードバックを用いてタスクを最適化することを学ぶパラダイムである。
本稿では,隠れた報酬関数の正確な学習を可能にする探索軌道を求める理論的報酬非依存PbRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:00:09Z) - Data Driven Reward Initialization for Preference based Reinforcement
Learning [20.13307800821161]
選好に基づく強化学習(PbRL)法は、ループ内の人間からの2進フィードバック(HiL)をクエリされた軌道対上で利用し、報酬モデルを学ぶ。
実験のランダムな種に敏感な報酬モデルにおける高い変動性の問題について検討する。
論文 参考訳(メタデータ) (2023-02-17T07:07:07Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
我々は、大量のラベルなしサンプルとデータ拡張を利用する半教師付き報酬学習フレームワークSURFを提案する。
報奨学習にラベルのないサンプルを活用するために,選好予測器の信頼性に基づいてラベルのないサンプルの擬似ラベルを推定する。
本実験は, ロボット操作作業における嗜好に基づく手法のフィードバック効率を有意に向上させることを実証した。
論文 参考訳(メタデータ) (2022-03-18T16:50:38Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
我々は、最小二乗値スタイルのアルゴリズムで一般的に使用される、より標準的なベルマン誤差の概念の下での反復が、ほぼ最適値関数の学習において強力なPAC保証を提供することを示す。
そこで本稿では,任意の(線形な)報酬関数に対して,最適に近いポリシーを学習するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2020-08-18T04:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。