Rethinking Robustness Assessment: Adversarial Attacks on Learning-based Quadrupedal Locomotion Controllers
- URL: http://arxiv.org/abs/2405.12424v2
- Date: Thu, 30 May 2024 23:54:53 GMT
- Title: Rethinking Robustness Assessment: Adversarial Attacks on Learning-based Quadrupedal Locomotion Controllers
- Authors: Fan Shi, Chong Zhang, Takahiro Miki, Joonho Lee, Marco Hutter, Stelian Coros,
- Abstract summary: Legged locomotion has recently achieved remarkable success with the progress of machine learning techniques.
We propose a computational method that leverages sequential adversarial attacks to identify weaknesses in learned locomotion controllers.
Our research demonstrates that, even state-of-the-art robust controllers can fail significantly under well-designed, low-magnitude adversarial sequence.
- Score: 33.50779001548997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Legged locomotion has recently achieved remarkable success with the progress of machine learning techniques, especially deep reinforcement learning (RL). Controllers employing neural networks have demonstrated empirical and qualitative robustness against real-world uncertainties, including sensor noise and external perturbations. However, formally investigating the vulnerabilities of these locomotion controllers remains a challenge. This difficulty arises from the requirement to pinpoint vulnerabilities across a long-tailed distribution within a high-dimensional, temporally sequential space. As a first step towards quantitative verification, we propose a computational method that leverages sequential adversarial attacks to identify weaknesses in learned locomotion controllers. Our research demonstrates that, even state-of-the-art robust controllers can fail significantly under well-designed, low-magnitude adversarial sequence. Through experiments in simulation and on the real robot, we validate our approach's effectiveness, and we illustrate how the results it generates can be used to robustify the original policy and offer valuable insights into the safety of these black-box policies. Project page: https://fanshi14.github.io/me/rss24.html
Related papers
- Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
We propose a novel learning framework, RobustSense, to defend common adversarial attacks.
Our method works well on wireless human activity recognition and person identification systems.
arXiv Detail & Related papers (2022-04-04T15:06:03Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Scalable Synthesis of Verified Controllers in Deep Reinforcement
Learning [0.0]
We propose an automated verification pipeline capable of synthesizing high-quality safety shields.
Our key insight involves separating safety verification from neural controller, using pre-computed verified safety shields to constrain neural controller training.
Experimental results over a range of realistic high-dimensional deep RL benchmarks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2021-04-20T19:30:29Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Robustifying Reinforcement Learning Agents via Action Space Adversarial
Training [23.284452331353894]
Adoption of machine learning (ML)-enabled cyber-physical systems (CPS) are becoming prevalent in various sectors of modern society.
Recent studies in deep reinforcement learning (DRL) have demonstrated its benefits in a large variety of data-driven decisions and control applications.
We show that a well-performing DRL agent that is initially susceptible to action space perturbations can be robustified against similar perturbations through adversarial training.
arXiv Detail & Related papers (2020-07-14T16:50:02Z) - Training Adversarial Agents to Exploit Weaknesses in Deep Control
Policies [47.08581439933752]
We propose an automated black box testing framework based on adversarial reinforcement learning.
We show that the proposed framework is able to find weaknesses in both control policies that were not evident during online testing.
arXiv Detail & Related papers (2020-02-27T13:14:53Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.