Learning Structure and Knowledge Aware Representation with Large Language Models for Concept Recommendation
- URL: http://arxiv.org/abs/2405.12442v1
- Date: Tue, 21 May 2024 01:35:36 GMT
- Title: Learning Structure and Knowledge Aware Representation with Large Language Models for Concept Recommendation
- Authors: Qingyao Li, Wei Xia, Kounianhua Du, Qiji Zhang, Weinan Zhang, Ruiming Tang, Yong Yu,
- Abstract summary: Concept recommendation aims to suggest the next concept for learners to study based on their knowledge states and the human knowledge system.
Previous approaches have not effectively integrated the human knowledge system into the process of designing these educational models.
We propose a novel Structure and Knowledge Aware Representation learning framework for concept Recommendation (SKarREC)
- Score: 50.31872005772817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Concept recommendation aims to suggest the next concept for learners to study based on their knowledge states and the human knowledge system. While knowledge states can be predicted using knowledge tracing models, previous approaches have not effectively integrated the human knowledge system into the process of designing these educational models. In the era of rapidly evolving Large Language Models (LLMs), many fields have begun using LLMs to generate and encode text, introducing external knowledge. However, integrating LLMs into concept recommendation presents two urgent challenges: 1) How to construct text for concepts that effectively incorporate the human knowledge system? 2) How to adapt non-smooth, anisotropic text encodings effectively for concept recommendation? In this paper, we propose a novel Structure and Knowledge Aware Representation learning framework for concept Recommendation (SKarREC). We leverage factual knowledge from LLMs as well as the precedence and succession relationships between concepts obtained from the knowledge graph to construct textual representations of concepts. Furthermore, we propose a graph-based adapter to adapt anisotropic text embeddings to the concept recommendation task. This adapter is pre-trained through contrastive learning on the knowledge graph to get a smooth and structure-aware concept representation. Then, it's fine-tuned through the recommendation task, forming a text-to-knowledge-to-recommendation adaptation pipeline, which effectively constructs a structure and knowledge-aware concept representation. Our method does a better job than previous adapters in transforming text encodings for application in concept recommendation. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed approach.
Related papers
- Knowledge Transfer Across Modalities with Natural Language Supervision [8.493435472659646]
We present a way to learn novel concepts by only using their textual description. Similarly to human perception, we leverage cross-modal interaction to introduce new concepts.
We show that Knowledge Transfer can successfully introduce novel concepts in multimodal models, in a very efficient manner.
arXiv Detail & Related papers (2024-11-23T17:26:50Z) - Conceptual Codebook Learning for Vision-Language Models [27.68834532978939]
We propose Codebook Learning (CoCoLe) to address the challenge of improving the generalization capability of vision-language models (VLMs)
We learn a conceptual codebook consisting of visual concepts as keys and conceptual prompts as values.
We observe that this conceptual codebook learning method is able to achieve enhanced alignment between visual and linguistic modalities.
arXiv Detail & Related papers (2024-07-02T15:16:06Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
We introduce the Knowledge-Enhanced Entity Representation Learning (KERL) framework to improve the semantic understanding of entities for Conversational recommender systems.
KERL uses a knowledge graph and a pre-trained language model to improve the semantic understanding of entities.
KERL achieves state-of-the-art results in both recommendation and response generation tasks.
arXiv Detail & Related papers (2023-12-18T06:41:23Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - K-LITE: Learning Transferable Visual Models with External Knowledge [242.3887854728843]
K-LITE (Knowledge-augmented Language-Image Training and Evaluation) is a strategy to leverage external knowledge to build transferable visual systems.
In training, it enriches entities in natural language with WordNet and Wiktionary knowledge.
In evaluation, the natural language is also augmented with external knowledge and then used to reference learned visual concepts.
arXiv Detail & Related papers (2022-04-20T04:47:01Z) - Semantic TrueLearn: Using Semantic Knowledge Graphs in Recommendation
Systems [22.387120578306277]
This work aims to advance towards building a state-aware educational recommendation system that incorporates semantic relatedness.
We introduce a novel learner model that exploits this semantic relatedness between knowledge components in learning resources using the Wikipedia link graph.
Our experiments with a large dataset demonstrate that this new semantic version of TrueLearn algorithm achieves statistically significant improvements in terms of predictive performance.
arXiv Detail & Related papers (2021-12-08T16:23:27Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
We propose a competence-aware curriculum for visual concept learning in a question-answering manner.
We design a neural-symbolic concept learner for learning the visual concepts and a multi-dimensional Item Response Theory (mIRT) model for guiding the learning process.
Experimental results on CLEVR show that with a competence-aware curriculum, the proposed method achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-07-03T05:08:09Z) - Attentional Graph Convolutional Networks for Knowledge Concept
Recommendation in MOOCs in a Heterogeneous View [72.98388321383989]
Massive open online courses ( MOOCs) provide a large-scale and open-access learning opportunity for students to grasp the knowledge.
To attract students' interest, the recommendation system is applied by MOOCs providers to recommend courses to students.
We propose an end-to-end graph neural network-based approach calledAttentionalHeterogeneous Graph Convolutional Deep Knowledge Recommender(ACKRec) for knowledge concept recommendation in MOOCs.
arXiv Detail & Related papers (2020-06-23T18:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.