TrajCogn: Leveraging LLMs for Cognizing Movement Patterns and Travel Purposes from Trajectories
- URL: http://arxiv.org/abs/2405.12459v2
- Date: Fri, 9 Aug 2024 07:54:41 GMT
- Title: TrajCogn: Leveraging LLMs for Cognizing Movement Patterns and Travel Purposes from Trajectories
- Authors: Zeyu Zhou, Yan Lin, Haomin Wen, Qisen Xu, Shengnan Guo, Jilin Hu, Youfang Lin, Huaiyu Wan,
- Abstract summary: S-temporal trajectories are crucial in various data mining tasks.
It is important to develop a versatile trajectory learning method that performs different tasks with high accuracy.
This is challenging due to limitations in model capacity and the quality and scale of trajectory datasets.
- Score: 24.44686757572976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatio-temporal trajectories are crucial in various data mining tasks. It is important to develop a versatile trajectory learning method that performs different tasks with high accuracy. This involves effectively extracting two core aspects of information--movement patterns and travel purposes--from trajectories. However, this is challenging due to limitations in model capacity and the quality and scale of trajectory datasets. Meanwhile, large language models (LLMs) have shown great success in versatility by training on large-scale, high-quality datasets. Given the similarities between trajectories and sentences, there's potential to leverage LLMs to develop an effective trajectory learning method. However, standard LLMs are not designed to handle the unique spatio-temporal features of trajectories and cannot extract movement patterns and travel purposes. To address these challenges, we propose a model called TrajCogn that effectively utilizes LLMs to model trajectories. TrajCogn leverages the strengths of LLMs to create a versatile trajectory learning approach while addressing the limitations of standard LLMs. First, TrajCogn incorporates a novel trajectory semantic embedder that enables LLMs to process spatio-temporal features and extract movement patterns and travel purposes. Second, TrajCogn introduces a new trajectory prompt that integrates these patterns and purposes into LLMs, allowing the model to adapt to various tasks. Extensive experiments on two real-world datasets and two representative tasks demonstrate that TrajCogn successfully achieves its design goals. Codes are available at https://anonymous.4open.science/r/TrajCogn-5021.
Related papers
- MLLM as Retriever: Interactively Learning Multimodal Retrieval for Embodied Agents [28.419007116364668]
MLLM agents demonstrate potential for complex embodied tasks by retrieving multimodal task-relevant trajectory data.
Current retrieval methods primarily focus on surface-level similarities of textual or visual cues in trajectories, neglecting their effectiveness for the specific task at hand.
We propose a novel method, MLLM as ReTriever (MART), which enhances the performance of embodied agents by utilizing interaction data to fine-tune an MLLM retriever.
arXiv Detail & Related papers (2024-10-04T14:10:39Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - Evaluating the Effectiveness of Large Language Models in Representing and Understanding Movement Trajectories [1.3658544194443192]
This research focuses on assessing the ability of AI foundation models in representing the trajectories of movements.
We utilize one of the large language models (LLMs) to encode the string format of trajectories and then evaluate the effectiveness of the LLM-based representation for trajectory data analysis.
arXiv Detail & Related papers (2024-08-31T02:57:25Z) - PTrajM: Efficient and Semantic-rich Trajectory Learning with Pretrained Trajectory-Mamba [22.622613591771152]
Vehicle trajectories provide crucial movement information for various real-world applications.
It is essential to develop a trajectory learning approach that efficiently extract rich semantic information, including movement and travel purposes.
We propose PTrajM, a novel method of efficient and semantic-rich vehicle trajectory learning.
arXiv Detail & Related papers (2024-08-09T07:48:51Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Are You Being Tracked? Discover the Power of Zero-Shot Trajectory
Tracing with LLMs! [3.844253028598048]
This study introduces LLMTrack, a model that illustrates how LLMs can be leveraged for Zero-Shot Trajectory Recognition.
We evaluate the model using real-world datasets designed to challenge it with distinct trajectories characterized by indoor and outdoor scenarios.
arXiv Detail & Related papers (2024-03-10T12:50:35Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.