Evaluating the Effectiveness of Large Language Models in Representing and Understanding Movement Trajectories
- URL: http://arxiv.org/abs/2409.00335v1
- Date: Sat, 31 Aug 2024 02:57:25 GMT
- Title: Evaluating the Effectiveness of Large Language Models in Representing and Understanding Movement Trajectories
- Authors: Yuhan Ji, Song Gao,
- Abstract summary: This research focuses on assessing the ability of AI foundation models in representing the trajectories of movements.
We utilize one of the large language models (LLMs) to encode the string format of trajectories and then evaluate the effectiveness of the LLM-based representation for trajectory data analysis.
- Score: 1.3658544194443192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research focuses on assessing the ability of AI foundation models in representing the trajectories of movements. We utilize one of the large language models (LLMs) (i.e., GPT-J) to encode the string format of trajectories and then evaluate the effectiveness of the LLM-based representation for trajectory data analysis. The experiments demonstrate that while the LLM-based embeddings can preserve certain trajectory distance metrics (i.e., the correlation coefficients exceed 0.74 between the Cosine distance derived from GPT-J embeddings and the Hausdorff and Dynamic Time Warping distances on raw trajectories), challenges remain in restoring numeric values and retrieving spatial neighbors in movement trajectory analytics. In addition, the LLMs can understand the spatiotemporal dependency contained in trajectories and have good accuracy in location prediction tasks. This research highlights the need for improvement in terms of capturing the nuances and complexities of the underlying geospatial data and integrating domain knowledge to support various GeoAI applications using LLMs.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning [91.95362946266577]
Path planning is a fundamental scientific problem in robotics and autonomous navigation.
Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows.
We propose a new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs.
This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios.
arXiv Detail & Related papers (2024-06-20T01:24:30Z) - T-JEPA: A Joint-Embedding Predictive Architecture for Trajectory Similarity Computation [6.844357745770191]
Trajectory similarity computation is an essential technique for analyzing moving patterns of spatial data across various applications.
We propose T-JEPA, a self-supervised trajectory similarity method employing Joint-Embedding Predictive Architecture (JEPA) to enhance trajectory representation learning.
arXiv Detail & Related papers (2024-06-13T09:51:51Z) - Deciphering Human Mobility: Inferring Semantics of Trajectories with Large Language Models [10.841035090991651]
This paper defines semantic inference through three key dimensions: user occupation category, activity, sequence and trajectory description.
We propose Trajectory Semantic Inference with Large Language Models (TSI-LLM) framework to leverage semantic analysis of trajectory data.
arXiv Detail & Related papers (2024-05-30T08:55:48Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
We propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning.
Our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios.
Our method can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.
arXiv Detail & Related papers (2024-05-22T22:22:25Z) - Are You Being Tracked? Discover the Power of Zero-Shot Trajectory
Tracing with LLMs! [3.844253028598048]
This study introduces LLMTrack, a model that illustrates how LLMs can be leveraged for Zero-Shot Trajectory Recognition.
We evaluate the model using real-world datasets designed to challenge it with distinct trajectories characterized by indoor and outdoor scenarios.
arXiv Detail & Related papers (2024-03-10T12:50:35Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - An Exploratory Assessment of LLM's Potential Toward Flight Trajectory
Reconstruction Analysis [3.3903227320938436]
The study focuses on reconstructing flight trajectories using Automatic Dependent Surveillance-Broadcast (ADS-B) data.
The findings demonstrate the model's proficiency in filtering noise and estimating both linear and curved flight trajectories.
The study's insights underscore the promise of LLMs in flight trajectory reconstruction and open new avenues for their broader application across the aviation and transportation sectors.
arXiv Detail & Related papers (2024-01-11T17:59:18Z) - Evaluating the Effectiveness of Large Language Models in Representing
Textual Descriptions of Geometry and Spatial Relations [2.8935588665357086]
This research focuses on assessing the ability of large language models (LLMs) in representing geometries and their spatial relations.
We utilize LLMs including GPT-2 and BERT to encode the well-known text (WKT) format of geometries and then feed their embeddings into classifiers and regressors.
Experiments demonstrate that while the LLMs-generated embeddings can preserve geometry types and capture some spatial relations (up to 73% accuracy), challenges remain in estimating numeric values and retrieving spatially related objects.
arXiv Detail & Related papers (2023-07-05T03:50:08Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.