論文の概要: Customize Your Own Paired Data via Few-shot Way
- arxiv url: http://arxiv.org/abs/2405.12490v1
- Date: Tue, 21 May 2024 04:21:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 14:18:37.234970
- Title: Customize Your Own Paired Data via Few-shot Way
- Title(参考訳): Few-shot Wayでペアリングしたデータをカスタマイズする
- Authors: Jinshu Chen, Bingchuan Li, Miao Hua, Panpan Xu, Qian He,
- Abstract要約: いくつかの教師付き手法は膨大な量のペアトレーニングデータを必要とするため、使用量が大幅に制限される。
他の教師なしの手法は、大規模な事前訓練された事前訓練を最大限に活用するため、事前訓練されたドメインに制限され、アウト・オブ・ディストリビューションのケースでひどく振る舞う。
提案フレームワークでは,サンプル間の方向変換に基づく新たな数ショット学習機構を導入し,学習可能な空間を指数関数的に拡張する。
- 参考スコア(独自算出の注目度): 14.193031218059646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing solutions to image editing tasks suffer from several issues. Though achieving remarkably satisfying generated results, some supervised methods require huge amounts of paired training data, which greatly limits their usages. The other unsupervised methods take full advantage of large-scale pre-trained priors, thus being strictly restricted to the domains where the priors are trained on and behaving badly in out-of-distribution cases. The task we focus on is how to enable the users to customize their desired effects through only few image pairs. In our proposed framework, a novel few-shot learning mechanism based on the directional transformations among samples is introduced and expands the learnable space exponentially. Adopting a diffusion model pipeline, we redesign the condition calculating modules in our model and apply several technical improvements. Experimental results demonstrate the capabilities of our method in various cases.
- Abstract(参考訳): 既存の画像編集タスクのソリューションは、いくつかの問題に悩まされている。
生成した結果を著しく満足するが、いくつかの教師付き手法は膨大な量のペアトレーニングデータを必要とするため、使用量が大幅に制限される。
他の教師なしの手法は、大規模な事前訓練された事前訓練を最大限に活用するため、事前訓練されたドメインに制限され、アウト・オブ・ディストリビューションのケースでひどく振る舞う。
私たちがフォーカスするタスクは、少数のイメージペアによって、ユーザが望ましいエフェクトをカスタマイズする方法です。
提案フレームワークでは,サンプル間の方向変換に基づく新たな数ショット学習機構を導入し,学習可能な空間を指数関数的に拡張する。
拡散モデルパイプラインを採用することで、モデル内の条件計算モジュールを再設計し、いくつかの技術的改善を適用します。
実験により, 各種症例における本手法の有効性が示された。
関連論文リスト
- One-Shot Pruning for Fast-adapting Pre-trained Models on Devices [28.696989086706186]
大規模な事前訓練モデルが下流タスクの解決に成功している。
これらのモデルを低機能デバイスにデプロイするには、モデルプルーニングのような効果的なアプローチが必要である。
そこで本研究では,類似タスクの抽出知識を活用して,事前学習したモデルからサブネットワークを抽出する,スケーラブルなワンショットプルーニング手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T06:44:47Z) - PIVOT: Prompting for Video Continual Learning [50.80141083993668]
PIVOTは、画像領域から事前学習したモデルにおける広範な知識を活用する新しい手法である。
実験の結果,PIVOTは20タスクのアクティビティネット設定において,最先端の手法を27%向上することがわかった。
論文 参考訳(メタデータ) (2022-12-09T13:22:27Z) - End-to-End Visual Editing with a Generatively Pre-Trained Artist [78.5922562526874]
対象画像編集の問題として、ソース画像内の領域と、所望の変更を指定したドライバ画像とをブレンドすることを考える。
対象領域のオフザシェルフ画像を拡大することにより編集をシミュレートする自己教師型アプローチを提案する。
我々は、モデルアーキテクチャに他の変更を加えることなく、拡張プロセスの直感的な制御によって異なるブレンディング効果が学習できることを示します。
論文 参考訳(メタデータ) (2022-05-03T17:59:30Z) - Squeezing Backbone Feature Distributions to the Max for Efficient
Few-Shot Learning [3.1153758106426603]
ラベル付きサンプルの少ない使用によって生じる不確実性のため、ほとんどショット分類が難しい問題である。
本稿では,特徴ベクトルをガウス分布に近づけるように処理するトランスファーベース手法を提案する。
また,学習中に未学習のサンプルが利用可能となる多段階的数ショット学習では,達成された性能をさらに向上させる最適なトランスポートインスピレーションアルゴリズムも導入する。
論文 参考訳(メタデータ) (2021-10-18T16:29:17Z) - Few-shot Quality-Diversity Optimization [50.337225556491774]
品質多様性(QD)の最適化は、強化学習における知覚的最小値とスパース報酬を扱う上で効果的なツールであることが示されている。
本稿では,タスク分布の例から,パラメータ空間の最適化によって得られる経路の情報を利用して,未知の環境でQD手法を初期化する場合,数発の適応が可能であることを示す。
ロボット操作とナビゲーションベンチマークを用いて、疎密な報酬設定と密集した報酬設定の両方で実施された実験は、これらの環境でのQD最適化に必要な世代数を著しく削減することを示している。
論文 参考訳(メタデータ) (2021-09-14T17:12:20Z) - Model-agnostic and Scalable Counterfactual Explanations via
Reinforcement Learning [0.5729426778193398]
本稿では,最適化手順をエンドツーエンドの学習プロセスに変換する深層強化学習手法を提案する。
実世界のデータを用いた実験により,本手法はモデルに依存しず,モデル予測からのフィードバックのみに依存することがわかった。
論文 参考訳(メタデータ) (2021-06-04T16:54:36Z) - Multi-Stage Influence Function [97.19210942277354]
我々は、事前学習データまで遡って、微調整されたモデルから予測を追跡するための多段階影響関数スコアを開発する。
本研究は,2つのシナリオについて検討し,事前訓練した埋め込みを微調整タスクで固定または更新する。
論文 参考訳(メタデータ) (2020-07-17T16:03:11Z) - Unsupervised Learning of Visual Features by Contrasting Cluster
Assignments [57.33699905852397]
ペア比較の計算を必要とせず,コントラスト的手法を生かしたオンラインアルゴリズムSwaVを提案する。
本手法では,クラスタ割り当て間の一貫性を保ちながら,同時にデータをクラスタ化する。
我々の方法は大規模で小さなバッチで訓練でき、無制限のデータにスケールできる。
論文 参考訳(メタデータ) (2020-06-17T14:00:42Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Improved Techniques for Training Single-Image GANs [44.251222212306764]
生成モデルは、大きなデータセットからではなく、単一のイメージから学習することができる。
1つのサンプルのみから現実的な画像を生成することができるモデルを訓練するためのベストプラクティスを提案する。
私たちのモデルはトレーニングの最大6倍高速で、パラメータが少なく、画像のグローバルな構造をよりよく捉えることができます。
論文 参考訳(メタデータ) (2020-03-25T17:33:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。