論文の概要: Entropic associative memory for real world images
- arxiv url: http://arxiv.org/abs/2405.12500v1
- Date: Tue, 21 May 2024 05:00:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 14:18:37.225049
- Title: Entropic associative memory for real world images
- Title(参考訳): 実世界の画像のためのエントロピー連想メモリ
- Authors: Noé Hernández, Rafael Morales, Luis A. Pineda,
- Abstract要約: EAMは,動物や車両の複雑なイメージを適切に保存し,認識し,検索する。
回収された物体は、適切な記憶、関連する記憶、想像の産物と見ることができる。
- 参考スコア(独自算出の注目度): 0.7373617024876725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The entropic associative memory (EAM) is a computational model of natural memory incorporating some of its putative properties of being associative, distributed, declarative, abstractive and constructive. Previous experiments satisfactorily tested the model on structured, homogeneous and conventional data: images of manuscripts digits and letters, images of clothing, and phone representations. In this work we show that EAM appropriately stores, recognizes and retrieves complex and unconventional images of animals and vehicles. Additionally, the memory system generates meaningful retrieval association chains for such complex images. The retrieved objects can be seen as proper memories, associated recollections or products of imagination.
- Abstract(参考訳): エントロピック連想メモリ(英: Entropic Associative memory、EAM)は、自然記憶の計算モデルであり、連想的、分散的、宣言的、抽象的、構成的な性質を取り入れている。
以前の実験では、原稿の桁と文字の画像、衣服の画像、電話の表現など、構造化された、均質で、従来のデータに基づいて、このモデルを十分にテストしていた。
本研究では,EAMが動物や車両の複雑なイメージを適切に保存し,認識し,検索することを示す。
さらに、メモリシステムは、そのような複雑な画像に対して有意義な検索関連連鎖を生成する。
回収された物体は、適切な記憶、関連する記憶、想像の産物と見ることができる。
関連論文リスト
- Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images [2.4861619769660637]
画像記憶可能性(英: Image memorability)とは、ある画像が他の画像よりも記憶されやすい現象である。
VGG16畳み込みニューラルネットワーク(CNN)に基づくオートエンコーダを用いた視覚記憶の主観的体験をモデル化した。
我々は,記憶可能性と復元誤差の関係について検討し,空間表現の特異性を評価するとともに,記憶可能性の予測を目的としたGRUモデルを開発した。
論文 参考訳(メタデータ) (2024-10-19T22:58:33Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
人間の脳活動から見るイメージを再構築することで、人間とコンピュータのビジョンをBrain-Computer Interfaceを通して橋渡しする。
異なる被験者から得られた機能的磁気共鳴イメージング(fMRI)による画像再構成のための全能モデルであるサイコメトリを考案した。
論文 参考訳(メタデータ) (2024-03-29T07:16:34Z) - Associative Memories in the Feature Space [68.1903319310263]
本稿では,低次元のセマンティック埋め込みのみを記憶するメモリモデルを提案する。
MNISTデータセット上の単純なタスクに対して,本手法の概念実証を行う。
論文 参考訳(メタデータ) (2024-02-16T16:37:48Z) - Improving Image Recognition by Retrieving from Web-Scale Image-Text Data [68.63453336523318]
本稿では,メモリから抽出した各サンプルの重要性を学習するアテンションベースのメモリモジュールを提案する。
既存の手法と比較して,提案手法は無関係な検索例の影響を排除し,入力クエリに有益であるものを保持する。
我々は、ImageNet-LT、Places-LT、Webvisionのデータセットで最先端の精度を実現していることを示す。
論文 参考訳(メタデータ) (2023-04-11T12:12:05Z) - Entropic Associative Memory for Manuscript Symbols [0.0]
マニュアルシンボルは、連想的で分散されているが宣言的でないエントロピーデジタルメモリから保存、認識、検索することができる。
完全情報と不完全情報の両方を用いてオブジェクトを検索するエントロピー連想メモリの動作特性について考察する。
論文 参考訳(メタデータ) (2022-02-17T02:29:33Z) - Associative Memories via Predictive Coding [37.59398215921529]
脳内の連想記憶は感覚ニューロンによって登録された活動パターンを受信し、記憶する。
本稿では,知覚ニューロンを介して外部刺激を受ける階層的生成ネットワークに基づいて,連想記憶を実現する新しいニューラルモデルを提案する。
論文 参考訳(メタデータ) (2021-09-16T15:46:26Z) - Remember What You have drawn: Semantic Image Manipulation with Memory [84.74585786082388]
本稿では,リアルでテキスト変換された画像を生成するメモリベースの画像操作ネットワーク(MIM-Net)を提案する。
頑健なメモリを学習するために,新しいランダム化メモリトレーニング損失を提案する。
4つの一般的なデータセットに対する実験は、既存のデータセットと比較して、我々の手法の優れた性能を示している。
論文 参考訳(メタデータ) (2021-07-27T03:41:59Z) - Constellation: Learning relational abstractions over objects for
compositional imagination [64.99658940906917]
静的な視覚シーンのリレーショナル抽象化を学習するネットワークであるConstellationを紹介する。
この研究は、視覚的関係を明確に表現し、それらを複雑な認知手続きに使用するための第一歩である。
論文 参考訳(メタデータ) (2021-07-23T11:59:40Z) - An Entropic Associative Memory [0.0]
我々は、個々のオブジェクトの表現を保持する連想メモリレジスタを検索するために、内在型決定型コンピューティングを使用する。
このシステムは手書き桁の表現を保持する視覚記憶のモデル化に使われている。
メモリ操作で回収されたcueとオブジェクトの類似性は、メモリレジスタのエントロピーに依存する。
論文 参考訳(メタデータ) (2020-09-28T04:24:21Z) - Self-Attentive Associative Memory [69.40038844695917]
我々は、個々の体験(記憶)とその発生する関係(関連記憶)の記憶を分離することを提案する。
機械学習タスクの多様性において,提案した2メモリモデルと競合する結果が得られる。
論文 参考訳(メタデータ) (2020-02-10T03:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。