CustomText: Customized Textual Image Generation using Diffusion Models
- URL: http://arxiv.org/abs/2405.12531v1
- Date: Tue, 21 May 2024 06:43:03 GMT
- Title: CustomText: Customized Textual Image Generation using Diffusion Models
- Authors: Shubham Paliwal, Arushi Jain, Monika Sharma, Vikram Jamwal, Lovekesh Vig,
- Abstract summary: Textual image generation spans diverse fields like advertising, education, product packaging, social media, information visualization, and branding.
Despite recent strides in language-guided image synthesis using diffusion models, current models excel in image generation but struggle with accurate text rendering and offer limited control over font attributes.
In this paper, we aim to enhance the synthesis of high-quality images with precise text customization, thereby contributing to the advancement of image generation models.
- Score: 13.239661107392324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Textual image generation spans diverse fields like advertising, education, product packaging, social media, information visualization, and branding. Despite recent strides in language-guided image synthesis using diffusion models, current models excel in image generation but struggle with accurate text rendering and offer limited control over font attributes. In this paper, we aim to enhance the synthesis of high-quality images with precise text customization, thereby contributing to the advancement of image generation models. We call our proposed method CustomText. Our implementation leverages a pre-trained TextDiffuser model to enable control over font color, background, and types. Additionally, to address the challenge of accurately rendering small-sized fonts, we train the ControlNet model for a consistency decoder, significantly enhancing text-generation performance. We assess the performance of CustomText in comparison to previous methods of textual image generation on the publicly available CTW-1500 dataset and a self-curated dataset for small-text generation, showcasing superior results.
Related papers
- ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models [52.23899502520261]
We introduce a new framework named ARTIST to focus on the learning of text structures.
We finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model.
Empirical results on the MARIO-Eval benchmark underscore the effectiveness of the proposed method, showing an improvement of up to 15% in various metrics.
arXiv Detail & Related papers (2024-06-17T19:31:24Z) - UDiffText: A Unified Framework for High-quality Text Synthesis in
Arbitrary Images via Character-aware Diffusion Models [25.219960711604728]
This paper proposes a novel approach for text image generation, utilizing a pre-trained diffusion model.
Our approach involves the design and training of a light-weight character-level text encoder, which replaces the original CLIP encoder.
By employing an inference stage refinement process, we achieve a notably high sequence accuracy when synthesizing text in arbitrarily given images.
arXiv Detail & Related papers (2023-12-08T07:47:46Z) - Paragraph-to-Image Generation with Information-Enriched Diffusion Model [67.9265336953134]
ParaDiffusion is an information-enriched diffusion model for paragraph-to-image generation task.
It delves into the transference of the extensive semantic comprehension capabilities of large language models to the task of image generation.
The code and dataset will be released to foster community research on long-text alignment.
arXiv Detail & Related papers (2023-11-24T05:17:01Z) - ControlStyle: Text-Driven Stylized Image Generation Using Diffusion
Priors [105.37795139586075]
We propose a new task for stylizing'' text-to-image models, namely text-driven stylized image generation.
We present a new diffusion model (ControlStyle) via upgrading a pre-trained text-to-image model with a trainable modulation network.
Experiments demonstrate the effectiveness of our ControlStyle in producing more visually pleasing and artistic results.
arXiv Detail & Related papers (2023-11-09T15:50:52Z) - TextDiffuser: Diffusion Models as Text Painters [118.30923824681642]
We introduce TextDiffuser, focusing on generating images with visually appealing text that is coherent with backgrounds.
We contribute the first large-scale text images dataset with OCR annotations, MARIO-10M, containing 10 million image-text pairs.
We show that TextDiffuser is flexible and controllable to create high-quality text images using text prompts alone or together with text template images, and conduct text inpainting to reconstruct incomplete images with text.
arXiv Detail & Related papers (2023-05-18T10:16:19Z) - GlyphDiffusion: Text Generation as Image Generation [100.98428068214736]
We propose GlyphDiffusion, a novel diffusion approach for text generation via text-guided image generation.
Our key idea is to render the target text as a glyph image containing visual language content.
Our model also makes significant improvements compared to the recent diffusion model.
arXiv Detail & Related papers (2023-04-25T02:14:44Z) - Improving Diffusion Models for Scene Text Editing with Dual Encoders [44.12999932588205]
Scene text editing is a challenging task that involves modifying or inserting specified texts in an image.
Recent advances in diffusion models have shown promise in overcoming these limitations with text-conditional image editing.
We propose DIFFSTE to improve pre-trained diffusion models with a dual encoder design.
arXiv Detail & Related papers (2023-04-12T02:08:34Z) - LAFITE: Towards Language-Free Training for Text-to-Image Generation [83.2935513540494]
We propose the first work to train text-to-image generation models without any text data.
Our method leverages the well-aligned multi-modal semantic space of the powerful pre-trained CLIP model.
We obtain state-of-the-art results in the standard text-to-image generation tasks.
arXiv Detail & Related papers (2021-11-27T01:54:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.