MentalQA: An Annotated Arabic Corpus for Questions and Answers of Mental Healthcare
- URL: http://arxiv.org/abs/2405.12619v1
- Date: Tue, 21 May 2024 09:16:38 GMT
- Title: MentalQA: An Annotated Arabic Corpus for Questions and Answers of Mental Healthcare
- Authors: Hassan Alhuzali, Ashwag Alasmari, Hamad Alsaleh,
- Abstract summary: MentalQA is a novel Arabic dataset featuring conversational-style question-and-answer (QA) interactions.
Data was collected from a question-answering medical platform.
MentalQA offers a valuable foundation for developing Arabic text mining tools capable of supporting mental health professionals and individuals seeking information.
- Score: 0.1638581561083717
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mental health disorders significantly impact people globally, regardless of background, education, or socioeconomic status. However, access to adequate care remains a challenge, particularly for underserved communities with limited resources. Text mining tools offer immense potential to support mental healthcare by assisting professionals in diagnosing and treating patients. This study addresses the scarcity of Arabic mental health resources for developing such tools. We introduce MentalQA, a novel Arabic dataset featuring conversational-style question-and-answer (QA) interactions. To ensure data quality, we conducted a rigorous annotation process using a well-defined schema with quality control measures. Data was collected from a question-answering medical platform. The annotation schema for mental health questions and corresponding answers draws upon existing classification schemes with some modifications. Question types encompass six distinct categories: diagnosis, treatment, anatomy \& physiology, epidemiology, healthy lifestyle, and provider choice. Answer strategies include information provision, direct guidance, and emotional support. Three experienced annotators collaboratively annotated the data to ensure consistency. Our findings demonstrate high inter-annotator agreement, with Fleiss' Kappa of $0.61$ for question types and $0.98$ for answer strategies. In-depth analysis revealed insightful patterns, including variations in question preferences across age groups and a strong correlation between question types and answer strategies. MentalQA offers a valuable foundation for developing Arabic text mining tools capable of supporting mental health professionals and individuals seeking information.
Related papers
- SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources.
This study aims to provide diverse, accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies.
arXiv Detail & Related papers (2024-10-17T22:04:32Z) - MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - How to Engage Your Readers? Generating Guiding Questions to Promote Active Reading [60.19226384241482]
We introduce GuidingQ, a dataset of 10K in-text questions from textbooks and scientific articles.
We explore various approaches to generate such questions using language models.
We conduct a human study to understand the implication of such questions on reading comprehension.
arXiv Detail & Related papers (2024-07-19T13:42:56Z) - Explainable AI for Mental Disorder Detection via Social Media: A survey and outlook [0.7689629183085726]
We conduct a thorough survey to explore the intersection of data science, artificial intelligence, and mental healthcare.
A significant portion of the population actively engages in online social media platforms, creating a vast repository of personal data.
The paper navigates through traditional diagnostic methods, state-of-the-art data- and AI-driven research studies, and the emergence of explainable AI (XAI) models for mental healthcare.
arXiv Detail & Related papers (2024-06-10T02:51:16Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - Psy-LLM: Scaling up Global Mental Health Psychological Services with
AI-based Large Language Models [3.650517404744655]
Psy-LLM framework is an AI-based tool leveraging Large Language Models for question-answering in psychological consultation settings.
Our framework combines pre-trained LLMs with real-world professional Q&A from psychologists and extensively crawled psychological articles.
It serves as a front-end tool for healthcare professionals, allowing them to provide immediate responses and mindfulness activities to alleviate patient stress.
arXiv Detail & Related papers (2023-07-22T06:21:41Z) - Towards Interpretable Mental Health Analysis with Large Language Models [27.776003210275608]
We evaluate the mental health analysis and emotional reasoning ability of large language models (LLMs) on 11 datasets across 5 tasks.
Based on prompts, we explore LLMs for interpretable mental health analysis by instructing them to generate explanations for each of their decisions.
We convey strict human evaluations to assess the quality of the generated explanations, leading to a novel dataset with 163 human-assessed explanations.
arXiv Detail & Related papers (2023-04-06T19:53:59Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z) - PsyQA: A Chinese Dataset for Generating Long Counseling Text for Mental
Health Support [32.176949527607746]
We propose PsyQA, a Chinese dataset of psychological health support in the form of question and answer pair.
PsyQA is crawled from a Chinese mental health service platform, and contains 22K questions and 56K long and well-structured answers.
arXiv Detail & Related papers (2021-06-03T09:06:25Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - Interpretable Multi-Step Reasoning with Knowledge Extraction on Complex
Healthcare Question Answering [89.76059961309453]
HeadQA dataset contains multiple-choice questions authorized for the public healthcare specialization exam.
These questions are the most challenging for current QA systems.
We present a Multi-step reasoning with Knowledge extraction framework (MurKe)
We are striving to make full use of off-the-shelf pre-trained models.
arXiv Detail & Related papers (2020-08-06T02:47:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.