Towards Interpretable Mental Health Analysis with Large Language Models
- URL: http://arxiv.org/abs/2304.03347v4
- Date: Wed, 11 Oct 2023 08:13:28 GMT
- Title: Towards Interpretable Mental Health Analysis with Large Language Models
- Authors: Kailai Yang, Shaoxiong Ji, Tianlin Zhang, Qianqian Xie, Ziyan Kuang,
Sophia Ananiadou
- Abstract summary: We evaluate the mental health analysis and emotional reasoning ability of large language models (LLMs) on 11 datasets across 5 tasks.
Based on prompts, we explore LLMs for interpretable mental health analysis by instructing them to generate explanations for each of their decisions.
We convey strict human evaluations to assess the quality of the generated explanations, leading to a novel dataset with 163 human-assessed explanations.
- Score: 27.776003210275608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The latest large language models (LLMs) such as ChatGPT, exhibit strong
capabilities in automated mental health analysis. However, existing relevant
studies bear several limitations, including inadequate evaluations, lack of
prompting strategies, and ignorance of exploring LLMs for explainability. To
bridge these gaps, we comprehensively evaluate the mental health analysis and
emotional reasoning ability of LLMs on 11 datasets across 5 tasks. We explore
the effects of different prompting strategies with unsupervised and distantly
supervised emotional information. Based on these prompts, we explore LLMs for
interpretable mental health analysis by instructing them to generate
explanations for each of their decisions. We convey strict human evaluations to
assess the quality of the generated explanations, leading to a novel dataset
with 163 human-assessed explanations. We benchmark existing automatic
evaluation metrics on this dataset to guide future related works. According to
the results, ChatGPT shows strong in-context learning ability but still has a
significant gap with advanced task-specific methods. Careful prompt engineering
with emotional cues and expert-written few-shot examples can also effectively
improve performance on mental health analysis. In addition, ChatGPT generates
explanations that approach human performance, showing its great potential in
explainable mental health analysis.
Related papers
- SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources.
This study aims to provide diverse, accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies.
arXiv Detail & Related papers (2024-10-17T22:04:32Z) - MentalGLM Series: Explainable Large Language Models for Mental Health Analysis on Chinese Social Media [31.752563319585196]
Black box models are inflexible when switching between tasks, and their results typically lack explanations.
With the rise of large language models (LLMs), their flexibility has introduced new approaches to the field.
In this paper, we introduce the first multi-task Chinese Social Media Interpretable Mental Health Instructions dataset, consisting of 9K samples.
We also propose MentalGLM series models, the first open-source LLMs designed for explainable mental health analysis targeting Chinese social media.
arXiv Detail & Related papers (2024-10-14T09:29:27Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - PsyEval: A Suite of Mental Health Related Tasks for Evaluating Large Language Models [34.09419351705938]
This paper presents PsyEval, the first comprehensive suite of mental health-related tasks for evaluating Large Language Models (LLMs)
This comprehensive framework is designed to thoroughly assess the unique challenges and intricacies of mental health-related tasks.
arXiv Detail & Related papers (2023-11-15T18:32:27Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - MentaLLaMA: Interpretable Mental Health Analysis on Social Media with
Large Language Models [28.62967557368565]
We build the first multi-task and multi-source interpretable mental health instruction dataset on social media, with 105K data samples.
We use expert-written few-shot prompts and collected labels to prompt ChatGPT and obtain explanations from its responses.
Based on the IMHI dataset and LLaMA2 foundation models, we train MentalLLaMA, the first open-source LLM series for interpretable mental health analysis.
arXiv Detail & Related papers (2023-09-24T06:46:08Z) - A Simple and Flexible Modeling for Mental Disorder Detection by Learning
from Clinical Questionnaires [0.2580765958706853]
We propose a novel approach that captures the semantic meanings directly from the text and compares them to symptom-related descriptions.
Our detailed analysis shows that the proposed model is effective at leveraging domain knowledge, transferable to other mental disorders, and providing interpretable detection results.
arXiv Detail & Related papers (2023-06-05T15:23:55Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - Clever Hans or Neural Theory of Mind? Stress Testing Social Reasoning in
Large Language Models [82.50173296858377]
Many anecdotal examples were used to suggest newer large language models (LLMs) like ChatGPT and GPT-4 exhibit Neural Theory-of-Mind (N-ToM)
We investigate the extent of LLMs' N-ToM through an extensive evaluation on 6 tasks and find that while LLMs exhibit certain N-ToM abilities, this behavior is far from being robust.
arXiv Detail & Related papers (2023-05-24T06:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.