論文の概要: Play Everywhere: A Temporal Logic based Game Environment Independent Approach for Playing Soccer with Robots
- arxiv url: http://arxiv.org/abs/2405.12628v1
- Date: Tue, 21 May 2024 09:30:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:49:12.103646
- Title: Play Everywhere: A Temporal Logic based Game Environment Independent Approach for Playing Soccer with Robots
- Title(参考訳): Play Everywhere: ロボットとサッカーをするための時間論理に基づくゲーム環境独立的アプローチ
- Authors: Vincenzo Suriani, Emanuele Musumeci, Daniele Nardi, Domenico Daniele Bloisi,
- Abstract要約: 本稿では,ロボットが環境の意味的特性に基づいて操作レベルを選択する,サッカーの階層的表現について述べる。
提案手法は、人間が公式のフィールドでサッカーをしたり、路上でサッカーをするのと同じように、ロボットが非構造化環境で動作できるようにする。
- 参考スコア(独自算出の注目度): 2.3999111269325266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robots playing soccer often rely on hard-coded behaviors that struggle to generalize when the game environment change. In this paper, we propose a temporal logic based approach that allows robots' behaviors and goals to adapt to the semantics of the environment. In particular, we present a hierarchical representation of soccer in which the robot selects the level of operation based on the perceived semantic characteristics of the environment, thus modifying dynamically the set of rules and goals to apply. The proposed approach enables the robot to operate in unstructured environments, just as it happens when humans go from soccer played on an official field to soccer played on a street. Three different use cases set in different scenarios are presented to demonstrate the effectiveness of the proposed approach.
- Abstract(参考訳): サッカーをするロボットは、ゲーム環境が変わると一般化に苦慮するハードコードな行動にしばしば依存する。
本稿では,ロボットの行動や目標を環境の意味に適応させるための時間論理に基づくアプローチを提案する。
特に,ロボットが環境の意味的特性に基づいて操作のレベルを選択し,ルールとゴールの集合を動的に修正する,サッカーの階層的表現について述べる。
提案手法は、人間が公式のフィールドでサッカーをしたり、路上でサッカーをするのと同じように、ロボットが非構造化環境で動作できるようにする。
提案手法の有効性を示すために,異なるシナリオで設定された3つの異なるユースケースを示す。
関連論文リスト
- Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning [17.906144781244336]
我々は,自己中心型RGBビジョンによる完全オンボード計算とセンシングにより,エンドツーエンドのロボットサッカーポリシーを訓練する。
本稿では,マルチエージェントロボットサッカーにおけるエンドツーエンドトレーニングの最初の実演を行う。
論文 参考訳(メタデータ) (2024-05-03T18:41:13Z) - Adapt On-the-Go: Behavior Modulation for Single-Life Robot Deployment [92.48012013825988]
展開中のシナリオにオンザフライで適応する問題について検討する。
ROAM(RObust Autonomous Modulation)は,事前学習した行動の知覚値に基づくメカニズムを提案する。
ROAMによりロボットはシミュレーションと実Go1の四足歩行の両方の動的変化に迅速に適応できることを示す。
論文 参考訳(メタデータ) (2023-11-02T08:22:28Z) - SEAL: Semantic Frame Execution And Localization for Perceiving Afforded
Robot Actions [5.522839151632667]
本稿では,ロボット操作行動のセマンティックフレーム表現を拡張し,セマンティックフレーム実行と局所化の問題をグラフィカルモデルとして導入する。
SEAL問題に対して、ロボットに与えられた行動の場所として、有限のセマンティックフレームに対する信念を維持するための非パラメトリックセマンティックフレームマッピング(SeFM)アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2023-03-24T15:25:41Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
実世界におけるヒューマノイド移動に対する完全学習型アプローチを提案する。
コントローラーは様々な屋外の地形の上を歩けるし、外乱に対して頑丈で、状況に応じて適応できる。
論文 参考訳(メタデータ) (2023-03-06T18:59:09Z) - Hierarchical Reinforcement Learning for Precise Soccer Shooting Skills
using a Quadrupedal Robot [76.04391023228081]
本研究では,四足歩行ロボットが実世界において,強化学習を用いて精度の高い射撃技術を実現できるという課題に対処する。
本研究では, 深層強化学習を活用して頑健な動作制御政策を訓練する階層的枠組みを提案する。
提案するフレームワークをA1四足歩行ロボットに展開し、実世界のランダムなターゲットに向けて正確にボールを発射できるようにする。
論文 参考訳(メタデータ) (2022-08-01T22:34:51Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - From Motor Control to Team Play in Simulated Humanoid Football [56.86144022071756]
我々は、現実的な仮想環境でサッカーをするために、物理的にシミュレートされたヒューマノイドアバターのチームを訓練する。
一連の段階において、プレイヤーはまず、現実的な人間のような動きを実行するために、完全に関節化された身体を制御することを学習する。
その後、ドリブルやシューティングといった中級のサッカーのスキルを身につける。
最後に、彼らは他の人を意識し、チームとしてプレーし、ミリ秒のタイムスケールで低レベルのモーターコントロールのギャップを埋める。
論文 参考訳(メタデータ) (2021-05-25T20:17:10Z) - Language Understanding for Field and Service Robots in a Priori Unknown
Environments [29.16936249846063]
本稿では,フィールドロボットとサービスロボットによる自然言語命令の解釈と実行を可能にする,新しい学習フレームワークを提案する。
自然言語の発話において、空間的、位相的、意味的な情報を暗黙的に推測する。
本研究では,この分布を確率論的言語基底モデルに組み込んで,ロボットの行動空間のシンボル表現上の分布を推定する。
論文 参考訳(メタデータ) (2021-05-21T15:13:05Z) - Deep Reactive Planning in Dynamic Environments [20.319894237644558]
ロボットは、実行中に環境の変化に適応できるエンドツーエンドポリシーを学ぶことができる。
本稿では,従来のキネマティック計画,深層学習,深層学習を組み合わせることで,そのような行動を実現する方法を提案する。
そこで本研究では,6-DoF産業用マニピュレータの実システムと同様に,シミュレーションにおけるいくつかの到達およびピック・アンド・プレイスタスクに対する提案手法を実証する。
論文 参考訳(メタデータ) (2020-10-31T00:46:13Z) - Learning to Play Soccer by Reinforcement and Applying Sim-to-Real to
Compete in the Real World [1.3114165111679479]
本研究は, IEEE Very Small Size Soccer (VSSS) における実サッカーロボットの完全制御のための強化学習(RL)の適用性を示す。
VSSSリーグでは、3つの小さなロボットの2つのチームが互いに対戦します。
本研究では、連続的または離散的な制御ポリシーを訓練できるシミュレーション環境と、得られたポリシーを用いて現実世界のロボットを制御できるようにするSim-to-Real法を提案する。
論文 参考訳(メタデータ) (2020-03-24T20:23:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。