論文の概要: Disentangled Representation with Cross Experts Covariance Loss for Multi-Domain Recommendation
- arxiv url: http://arxiv.org/abs/2405.12706v1
- Date: Tue, 21 May 2024 11:54:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 00:01:57.160649
- Title: Disentangled Representation with Cross Experts Covariance Loss for Multi-Domain Recommendation
- Title(参考訳): マルチドメイン勧告のためのクロスエキスパート共分散損失を用いた不整合表現
- Authors: Zhutian Lin, Junwei Pan, Haibin Yu, Xi Xiao, Ximei Wang, Zhixiang Feng, Shifeng Wen, Shudong Huang, Lei Xiao, Jie Jiang,
- Abstract要約: 多分野学習(MDL)は、パーソナライズされたサービスの品質向上を目的とした研究分野として注目されている。
MDLの主な課題は、各ドメインの異なる特性を保ちながら、ドメイン間の共通性を学ぶことのバランスを崩すことである。
異形学習のためのクロスエキスパート共分散損失(Covariance Loss for Disentangled Learning)を表す新しいモデルであるCrocodileを提案する。
- 参考スコア(独自算出の注目度): 25.856289886001047
- License:
- Abstract: Multi-domain learning (MDL) has emerged as a prominent research area aimed at enhancing the quality of personalized services. The key challenge in MDL lies in striking a balance between learning commonalities across domains while preserving the distinct characteristics of each domain. However, this gives rise to a challenging dilemma. On one hand, a model needs to leverage domain-specific modules, such as experts or embeddings, to preserve the uniqueness of each domain. On the other hand, due to the long-tailed distributions observed in real-world domains, some tail domains may lack sufficient samples to fully learn their corresponding modules. Unfortunately, existing approaches have not adequately addressed this dilemma. To address this issue, we propose a novel model called Crocodile, which stands for Cross-experts Covariance Loss for Disentangled Learning. Crocodile adopts a multi-embedding paradigm to facilitate model learning and employs a Covariance Loss on these embeddings to disentangle them. This disentanglement enables the model to capture diverse user interests across domains effectively. Additionally, we introduce a novel gating mechanism to further enhance the capabilities of Crocodile. Through empirical analysis, we demonstrate that our proposed method successfully resolves these two challenges and outperforms all state-of-the-art methods on publicly available datasets. We firmly believe that the analytical perspectives and design concept of disentanglement presented in our work can pave the way for future research in the field of MDL.
- Abstract(参考訳): 多分野学習(MDL)は、パーソナライズされたサービスの品質向上を目的とした研究分野として注目されている。
MDLにおける重要な課題は、各ドメインの異なる特性を維持しながら、ドメイン間の共通性を学ぶことのバランスを崩すことである。
しかし、これは挑戦的なジレンマを引き起こします。
一方、モデルは各ドメインのユニークさを維持するために、専門家や埋め込みのようなドメイン固有のモジュールを活用する必要があります。
一方、現実世界のドメインで見られる長い尾の分布のため、いくつかの尾のドメインは対応するモジュールを完全に学習するのに十分なサンプルが不足している可能性がある。
残念ながら、既存のアプローチはこのジレンマに適切に対応していません。
この問題に対処するために,クロスエキスパートの共分散損失(Covariance Loss for Disentangled Learning)を表す,Crocodileと呼ばれる新しいモデルを提案する。
Crocodileはモデル学習を容易にするためにマルチ埋め込みのパラダイムを採用し、これらの埋め込みに共分散損失を採用してそれらを解き放つ。
この混乱により、モデルはドメイン間の多様なユーザー関心を効果的に捉えることができる。
さらに,クロコダイルの機能を高めるための新しいゲーティング機構を導入する。
実験分析により,提案手法はこれらの2つの課題の解決に成功し,公開データセット上での最先端の手法よりも優れていることを示す。
我々は,MDLの分野における将来的な研究の道のりを,我々の研究で提示された分析的視点と設計的アンタングルメントの概念が確立できると強く信じている。
関連論文リスト
- Towards Federated Domain Unlearning: Verification Methodologies and Challenges [34.9987941096371]
フェデレート・ドメイン・アンラーニングに関する最初の総合的な実証的研究について紹介する。
その結果,非学習がモデルの深い層に不均等に影響を及ぼすことが判明した。
フェデレート・ドメイン・アンラーニングに適した新しい評価手法を提案する。
論文 参考訳(メタデータ) (2024-06-05T09:05:55Z) - Cross-Domain Continual Learning via CLAMP [10.553456651003055]
CLAMPは、すべての実験で確立されたベースラインアルゴリズムを少なくとも10%のマージンで大幅に上回っている。
ベースモデルの学習プロセスをナビゲートするために、評価者誘導学習プロセスがフォワードされる。
論文 参考訳(メタデータ) (2024-05-12T02:41:31Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS)は、ラベル付きソースドメインからラベル付きターゲットドメインに監督を移すことを目的としている。
本稿では,特徴量と特徴量との相違に対処するQuad-directional Mixup(QuadMix)法を提案する。
提案手法は,4つの挑戦的UDA-SSベンチマークにおいて,最先端の成果を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2023-11-22T09:18:49Z) - Improving Anomaly Segmentation with Multi-Granularity Cross-Domain
Alignment [17.086123737443714]
異常セグメンテーションは、画像中の非定型物体を識別する上で重要な役割を担っている。
既存の手法は合成データに顕著な結果を示すが、合成データドメインと実世界のデータドメインの相違を考慮できないことが多い。
シーンと個々のサンプルレベルの両方で、ドメイン間の機能を調和させるのに適した、マルチグラニュラリティ・クロスドメインアライメントフレームワークを導入します。
論文 参考訳(メタデータ) (2023-08-16T22:54:49Z) - Cross Contrasting Feature Perturbation for Domain Generalization [11.863319505696184]
ドメインの一般化は、目に見えないターゲットドメインをうまく一般化するソースドメインから堅牢なモデルを学ぶことを目的としています。
近年の研究では、ソースドメインに相補的な分布を多様化するための新しいドメインサンプルや特徴の生成に焦点が当てられている。
ドメインシフトをシミュレートするオンラインワンステージクロスコントラスト機能摂動フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-24T03:27:41Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
マルチソースアン教師付きドメイン適応(MSDA)は、ソースモデルの袋から弱い知識を割り当てることで、ラベルのないドメインの予測子を学習することを目的としている。
我々は,DomaIn Alignment Layers (MS-DIAL) のマルチソースバージョンを予測器の異なるレベルに埋め込むことを提案する。
我々の手法は最先端のMSDA法を改善することができ、分類精度の相対利得は+30.64%に達する。
論文 参考訳(メタデータ) (2021-09-06T18:41:19Z) - Cross-domain Imitation from Observations [50.669343548588294]
模擬学習は、専門家の行動を利用して訓練エージェントに適切な報酬関数を設計することの難しさを回避しようとする。
本稿では,専門家とエージェントMDPの相違点が存在する場合に,タスクを模倣する方法の問題について検討する。
このようなドメイン間の対応を学習するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-20T21:08:25Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
大規模ラベル付きトレーニングデータセットにより、ディープニューラルネットワークは、幅広いベンチマークビジョンタスクを拡張できるようになった。
多くのアプリケーションにおいて、大量のラベル付きデータを取得するのは非常に高価で時間を要する。
限られたラベル付きトレーニングデータに対処するため、大規模ラベル付きソースドメインでトレーニングされたモデルを、疎ラベルまたは未ラベルのターゲットドメインに直接適用しようと試みている人も多い。
論文 参考訳(メタデータ) (2020-09-01T00:06:50Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
マルチソースドメイン適応(LtC-MSDA)フレームワークを併用する学習法を提案する。
簡単に言うと、知識グラフは様々なドメインのプロトタイプ上に構築され、セマンティックに隣接した表現間の情報伝達を実現する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-07-17T07:52:44Z) - Multi-Source Domain Adaptation for Text Classification via
DistanceNet-Bandits [101.68525259222164]
本研究では,NLPタスクのコンテキストにおいて,サンプル推定に基づく領域間の相違を特徴付ける様々な距離ベース尺度について検討する。
タスクの損失関数と協調して最小化するために,これらの距離測度を付加的な損失関数として用いるディスタンスネットモデルを開発した。
マルチアーム・バンド・コントローラを用いて複数のソース・ドメインを動的に切り替えるDistanceNet-Banditモデルに拡張する。
論文 参考訳(メタデータ) (2020-01-13T15:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。