Cross-Domain Semantic Segmentation with Large Language Model-Assisted Descriptor Generation
- URL: http://arxiv.org/abs/2501.16467v1
- Date: Mon, 27 Jan 2025 20:02:12 GMT
- Title: Cross-Domain Semantic Segmentation with Large Language Model-Assisted Descriptor Generation
- Authors: Philip Hughes, Larry Burns, Luke Adams,
- Abstract summary: LangSeg is a novel semantic segmentation method that leverages context-sensitive, fine-grained subclass descriptors.
We evaluate LangSeg on two challenging datasets, ADE20K and COCO-Stuff, where it outperforms state-of-the-art models.
- Score: 0.0
- License:
- Abstract: Semantic segmentation plays a crucial role in enabling machines to understand and interpret visual scenes at a pixel level. While traditional segmentation methods have achieved remarkable success, their generalization to diverse scenes and unseen object categories remains limited. Recent advancements in large language models (LLMs) offer a promising avenue for bridging visual and textual modalities, providing a deeper understanding of semantic relationships. In this paper, we propose LangSeg, a novel LLM-guided semantic segmentation method that leverages context-sensitive, fine-grained subclass descriptors generated by LLMs. Our framework integrates these descriptors with a pre-trained Vision Transformer (ViT) to achieve superior segmentation performance without extensive model retraining. We evaluate LangSeg on two challenging datasets, ADE20K and COCO-Stuff, where it outperforms state-of-the-art models, achieving up to a 6.1% improvement in mean Intersection over Union (mIoU). Additionally, we conduct a comprehensive ablation study and human evaluation to validate the effectiveness of our method in real-world scenarios. The results demonstrate that LangSeg not only excels in semantic understanding and contextual alignment but also provides a flexible and efficient framework for language-guided segmentation tasks. This approach opens up new possibilities for interactive and domain-specific segmentation applications.
Related papers
- LMSeg: Unleashing the Power of Large-Scale Models for Open-Vocabulary Semantic Segmentation [16.864086165056698]
Existing open-vocabulary approaches leverage vision-language models, such as CLIP, to align visual features with rich semantic features acquired through pre-training on large-scale vision-language datasets.
We propose to alleviate the issues by leveraging multiple large-scale models to enhance the alignment between fine-grained visual features and enriched linguistic features.
Our method achieves state-of-the-art performance across all major open-vocabulary segmentation benchmarks.
arXiv Detail & Related papers (2024-11-30T05:49:42Z) - Visual Prompt Selection for In-Context Learning Segmentation [77.15684360470152]
In this paper, we focus on rethinking and improving the example selection strategy.
We first demonstrate that ICL-based segmentation models are sensitive to different contexts.
Furthermore, empirical evidence indicates that the diversity of contextual prompts plays a crucial role in guiding segmentation.
arXiv Detail & Related papers (2024-07-14T15:02:54Z) - Frequency-based Matcher for Long-tailed Semantic Segmentation [22.199174076366003]
We focus on a relatively under-explored task setting, long-tailed semantic segmentation (LTSS)
We propose a dual-metric evaluation system and construct the LTSS benchmark to demonstrate the performance of semantic segmentation methods and long-tailed solutions.
We also propose a transformer-based algorithm to improve LTSS, frequency-based matcher, which solves the oversuppression problem by one-to-many matching.
arXiv Detail & Related papers (2024-06-06T09:57:56Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - Exploring Open-Vocabulary Semantic Segmentation without Human Labels [76.15862573035565]
We present ZeroSeg, a novel method that leverages the existing pretrained vision-language model (VL) to train semantic segmentation models.
ZeroSeg overcomes this by distilling the visual concepts learned by VL models into a set of segment tokens, each summarizing a localized region of the target image.
Our approach achieves state-of-the-art performance when compared to other zero-shot segmentation methods under the same training data.
arXiv Detail & Related papers (2023-06-01T08:47:06Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
We propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations.
Our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.
arXiv Detail & Related papers (2022-07-18T09:20:04Z) - Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings [81.09026586111811]
We propose an approach to semantic segmentation that achieves state-of-the-art supervised performance when applied in a zero-shot setting.
This is achieved by replacing each class label with a vector-valued embedding of a short paragraph that describes the class.
The resulting merged semantic segmentation dataset of over 2 Million images enables training a model that achieves performance equal to that of state-of-the-art supervised methods on 7 benchmark datasets.
arXiv Detail & Related papers (2022-02-04T07:19:09Z) - Referring Image Segmentation via Cross-Modal Progressive Comprehension [94.70482302324704]
Referring image segmentation aims at segmenting the foreground masks of the entities that can well match the description given in the natural language expression.
Previous approaches tackle this problem using implicit feature interaction and fusion between visual and linguistic modalities.
We propose a Cross-Modal Progressive (CMPC) module and a Text-Guided Feature Exchange (TGFE) module to effectively address the challenging task.
arXiv Detail & Related papers (2020-10-01T16:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.