論文の概要: Predicting the Influence of Adverse Weather on Pedestrian Detection with Automotive Radar and Lidar Sensors
- arxiv url: http://arxiv.org/abs/2405.12736v1
- Date: Tue, 21 May 2024 12:44:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:29:38.954200
- Title: Predicting the Influence of Adverse Weather on Pedestrian Detection with Automotive Radar and Lidar Sensors
- Title(参考訳): 自動車レーダとライダーセンサを用いた歩行者検出における逆気象の影響予測
- Authors: Daniel Weihmayr, Fatih Sezgin, Leon Tolksdorf, Christian Birkner, Reza N. Jazar,
- Abstract要約: 歩行者は道路交通で最も危険に晒されている交通機関の1つである。
名目状態での歩行者検出は良好に確立されているが,センサや歩行者検出性能は悪天候下で低下する。
本稿では,利用者が特定したレーダとライダーが歩行者検出性能に与える影響を予測する専用テキストウェザーフィルタ(WF)モデルを提案する。
- 参考スコア(独自算出の注目度): 2.4903631775244213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrians are among the most endangered traffic participants in road traffic. While pedestrian detection in nominal conditions is well established, the sensor and, therefore, the pedestrian detection performance degrades under adverse weather conditions. Understanding the influences of rain and fog on a specific radar and lidar sensor requires extensive testing, and if the sensors' specifications are altered, a retesting effort is required. These challenges are addressed in this paper, firstly by conducting comprehensive measurements collecting empirical data of pedestrian detection performance under varying rain and fog intensities in a controlled environment, and secondly, by introducing a dedicated \textit{Weather Filter} (WF) model that predicts the effects of rain and fog on a user-specified radar and lidar on pedestrian detection performance. We use a state-of-the-art baseline model representing the physical relation of sensor specifications, which, however, lacks the representation of secondary weather effects, e.g., changes in pedestrian reflectivity or droplets on a sensor, and adjust it with empirical data to account for such. We find that our measurement results are in agreement with existent literature related to weather degredation and our WF outperforms the baseline model in predicting weather effects on pedestrian detection while only requiring a minimal testing effort.
- Abstract(参考訳): 歩行者は道路交通で最も危険に晒されている交通機関の1つである。
名目状態での歩行者検出は良好に確立されているが,センサや歩行者検出性能は悪天候下で低下する。
雨と霧が特定のレーダーとライダーセンサーに与える影響を理解するには、広範囲なテストが必要である。
これらの課題に対処するために、まず、制御された環境において、雨や霧の強度の異なる歩行者検出性能の実証データを総合的に収集し、次に、雨や霧が歩行者検出性能に与える影響を予測する専用 \textit{Weather Filter} (WF) モデルを導入する。
本研究では,センサ仕様の物理的関係を表す最新技術ベースラインモデルを用いて,センサ上の歩行者反射率や液滴の変化といった二次気象効果の表現を欠き,経験データを用いて調整する。
観測結果は,気象の劣化に関する文献と一致しており,WFは,最小限のテスト作業のみを必要としながら,歩行者検出に対する気象の影響を予測する上で,ベースラインモデルよりも優れていることがわかった。
関連論文リスト
- OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - Challenges of YOLO Series for Object Detection in Extremely Heavy Rain:
CALRA Simulator based Synthetic Evaluation Dataset [0.0]
様々なセンサー(LiDAR、レーダー、カメラなど)による物体検出は、自動運転車に優先されるべきである。
これらのセンサーは、多様な気象条件下で物体を正確に素早く検出する必要があるが、雨や雪、霧といった悪天候条件下で物体を一貫して検出することは困難である。
本研究では,降水条件から得られた雨滴データに基づいて,様々な降水条件下で多様なネットワークモデルをテストすることのできる新しいデータセットを構築した。
論文 参考訳(メタデータ) (2023-12-13T08:45:57Z) - Towards Robust 3D Object Detection In Rainy Conditions [10.920640666237833]
道路噴霧に対するLiDARを用いた3次元物体検出装置のロバスト性向上のための枠組みを提案する。
当社のアプローチでは,LiDAR点雲からの噴霧を除去するために,最先端の悪天候検知ネットワークを用いている。
悪天候のフィルタリングに加えて、レーダターゲットを用いて偽陽性検出をさらにフィルタリングする方法について検討する。
論文 参考訳(メタデータ) (2023-10-02T07:34:15Z) - Energy-based Detection of Adverse Weather Effects in LiDAR Data [7.924836086640871]
本稿では,LiDARデータにおける悪天候の影響を検知するための新しい手法を提案する。
提案手法では,低エネルギースコアを不整点,高エネルギースコアを不整点に関連付ける。
悪天候下でのLiDAR知覚の研究領域の拡大を支援するため、SemanticSprayデータセットをリリースする。
論文 参考訳(メタデータ) (2023-05-25T15:03:36Z) - Survey on LiDAR Perception in Adverse Weather Conditions [6.317642241067219]
アクティブなLiDARセンサーは、シーンの正確な3D表現を作成することができる。
霧、雪、雨などの悪天候条件下でのLiDARの性能は変化する。
我々は、適切なデータの提供、生の点クラウド処理とデノイング、ロバストな認識アルゴリズム、悪天候による欠点を軽減するためのセンサ融合といったトピックに対処する。
論文 参考訳(メタデータ) (2023-04-13T07:45:23Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
自律レースでは、天気は突然変化し、認識が著しく低下し、非効率な操作が引き起こされる。
悪天候の検知を改善するために、ディープラーニングベースのモデルは通常、そのような状況下でキャプチャされた広範なデータセットを必要とする。
本稿では,5つの最先端検出器のうち4つの性能向上を図るために,自動レース(CycleGANを用いた)における合成悪条件データセットを用いた手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T10:02:40Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
すべてのセンサの継続的な監視は、リソースの制約のためにコストがかかる可能性がある。
有限パラメータ化確率分布の一般クラスに対する検出遅延に基づく情報理論の下界を導出する。
本稿では,異なる検知オプションの探索と質問行動の活用をシームレスに両立させる,計算効率のよいオンラインセンシング手法を提案する。
論文 参考訳(メタデータ) (2021-07-22T07:25:35Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。