論文の概要: Progress Measures for Grokking on Real-world Datasets
- arxiv url: http://arxiv.org/abs/2405.12755v1
- Date: Tue, 21 May 2024 13:06:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:19:55.417586
- Title: Progress Measures for Grokking on Real-world Datasets
- Title(参考訳): 実世界のデータセットにおけるグローキングの進展対策
- Authors: Satvik Golechha,
- Abstract要約: グロキング(Grokking)は、機械学習モデルが過度に適合した後長く一般化する現象である。
本稿では,クロスエントロピー損失下での分類にディープニューラルネットワークを用いた実世界のデータセットのグルーキングについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Grokking, a phenomenon where machine learning models generalize long after overfitting, has been primarily observed and studied in algorithmic tasks. This paper explores grokking in real-world datasets using deep neural networks for classification under the cross-entropy loss. We challenge the prevalent hypothesis that the $L_2$ norm of weights is the primary cause of grokking by demonstrating that grokking can occur outside the expected range of weight norms. To better understand grokking, we introduce three new progress measures: activation sparsity, absolute weight entropy, and approximate local circuit complexity. These measures are conceptually related to generalization and demonstrate a stronger correlation with grokking in real-world datasets compared to weight norms. Our findings suggest that while weight norms might usually correlate with grokking and our progress measures, they are not causative, and our proposed measures provide a better understanding of the dynamics of grokking.
- Abstract(参考訳): グロキング(Grokking)は、機械学習モデルがオーバーフィッティングの長い後に一般化する現象であり、主にアルゴリズムのタスクで観察され研究されている。
本稿では,クロスエントロピー損失下での分類にディープニューラルネットワークを用いた実世界のデータセットのグルーキングについて検討する。
我々は、ウェイトノルムの$L_2$ノルムが、ウェイトノルムの期待範囲外においてグラッキングが起こりうることを示すことで、グラッキングの主要な原因である、という一般的な仮説に挑戦する。
グルーキングをよりよく理解するために,活性化空間,絶対重みエントロピー,局所回路の複雑さを近似した3つの新しい進行手段を導入する。
これらの尺度は、一般化と概念的に関連し、重量ノルムと比較して現実世界のデータセットのグラッキングと強い相関を示す。
本研究の結果から, 重量ノルムはグルーキングや進行測定と相関するが, 因果関係はなく, 提案手法はグルーキングのダイナミクスをよりよく理解するものであることが示唆された。
関連論文リスト
- Deep Grokking: Would Deep Neural Networks Generalize Better? [51.24007462968805]
グロキング(Grokking)とは、テストセットにおけるネットワークの一般化精度の急激な上昇を指す。
深層ニューラルネットワークは、浅いものよりもグラッキングの影響を受けやすいことがわかりました。
また,モデル深度を増大させると,興味深い多段階一般化現象が観測される。
論文 参考訳(メタデータ) (2024-05-29T19:05:11Z) - Understanding Grokking Through A Robustness Viewpoint [3.23379981095083]
ニューラルネットワークの一般的な$l$ノルム(メトリック)は、実際にはグルークするのに十分な条件であることを示す。
我々は、ロバストネスと情報理論に基づく新しいメトリクスを提案し、我々の新しいメトリクスがグラッキング現象とよく相関し、グラッキングを予測するのに使用できることを発見した。
論文 参考訳(メタデータ) (2023-11-11T15:45:44Z) - Grokking in Linear Estimators -- A Solvable Model that Groks without
Understanding [1.1510009152620668]
グロキングは、トレーニングデータに適合した後、モデルが一般化することを学習する場所である。
線形処理を行う線形ネットワークにおいて、グラッキングが驚くほど起こりうることを解析的および数値的に示す。
論文 参考訳(メタデータ) (2023-10-25T08:08:44Z) - Interpolation can hurt robust generalization even when there is no noise [76.3492338989419]
リッジの正規化による一般化の回避は,ノイズがなくても大幅に一般化できることを示す。
この現象は線形回帰と分類の両方のロバストなリスクを証明し、したがってロバストなオーバーフィッティングに関する最初の理論的結果を与える。
論文 参考訳(メタデータ) (2021-08-05T23:04:15Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - Neural Pruning via Growing Regularization [82.9322109208353]
プルーニングの2つの中心的な問題:プルーニングのスケジュールと重み付けの重要度だ。
具体的には, ペナルティ要因が増大するL2正規化変種を提案し, 精度が著しく向上することを示した。
提案アルゴリズムは,構造化プルーニングと非構造化プルーニングの両方において,大規模データセットとネットワークの実装が容易かつスケーラブルである。
論文 参考訳(メタデータ) (2020-12-16T20:16:28Z) - Improve Generalization and Robustness of Neural Networks via Weight
Scale Shifting Invariant Regularizations [52.493315075385325]
重み劣化を含む正則化器の族は、均質な活性化関数を持つネットワークに対する本質的な重みのノルムをペナルティ化するのに有効でないことを示す。
そこで我々は,ニューラルネットワークの本質的な規範を効果的に制約する改良型正規化器を提案する。
論文 参考訳(メタデータ) (2020-08-07T02:55:28Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。