論文の概要: Transformer in Touch: A Survey
- arxiv url: http://arxiv.org/abs/2405.12779v1
- Date: Tue, 21 May 2024 13:26:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:10:09.392929
- Title: Transformer in Touch: A Survey
- Title(参考訳): Transformer in Touch: 調査
- Authors: Jing Gao, Ning Cheng, Bin Fang, Wenjuan Han,
- Abstract要約: 自然言語処理の分野で最初に大きな成功を収めたTransformerモデルは、最近、触覚認識の応用に大きな可能性を示している。
本稿では,触覚技術におけるトランスフォーマーの適用と開発について概観する。
- 参考スコア(独自算出の注目度): 29.622771021984594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Transformer model, initially achieving significant success in the field of natural language processing, has recently shown great potential in the application of tactile perception. This review aims to comprehensively outline the application and development of Transformers in tactile technology. We first introduce the two fundamental concepts behind the success of the Transformer: the self-attention mechanism and large-scale pre-training. Then, we delve into the application of Transformers in various tactile tasks, including but not limited to object recognition, cross-modal generation, and object manipulation, offering a concise summary of the core methodologies, performance benchmarks, and design highlights. Finally, we suggest potential areas for further research and future work, aiming to generate more interest within the community, tackle existing challenges, and encourage the use of Transformer models in the tactile field.
- Abstract(参考訳): 自然言語処理の分野で最初に大きな成功を収めたTransformerモデルは、最近、触覚認識の応用に大きな可能性を示している。
本稿では,触覚技術におけるトランスフォーマーの適用と開発について概観する。
まず,トランスフォーマーの成功の背景にある2つの基本的な概念,すなわち自己認識機構と大規模事前学習を紹介する。
次に,多種多様な触覚タスクにおけるトランスフォーマーの適用について検討する。オブジェクト認識,クロスモーダル生成,オブジェクト操作に限らず,コア方法論,パフォーマンスベンチマーク,設計ハイライトの簡潔な要約を提供する。
最後に,コミュニティ内でより多くの関心を喚起し,既存の課題に取り組み,触覚領域におけるトランスフォーマーモデルの利用を促進することを目的として,さらなる研究と今後の研究の可能性を示唆する。
関連論文リスト
- A Survey on Large Language Models from Concept to Implementation [4.219910716090213]
近年のLarge Language Models (LLM) の進歩により、自然言語処理(NLP)アプリケーションの範囲が拡大している。
本稿では,これらのモデルの多面的応用について検討し,GPTシリーズに着目した。
この調査は、コーディングや問題解決といった従来のタスクに革命をもたらす人工知能(AI)駆動ツールの変革的な影響に焦点を当てている。
論文 参考訳(メタデータ) (2024-03-27T19:35:41Z) - Adventures of Trustworthy Vision-Language Models: A Survey [54.76511683427566]
本稿では,バイス,ロバスト性,解釈可能性の3つの基本原理を用いて,視覚言語変換器の徹底的な検証を行う。
本研究の主な目的は, トランスフォーマーの実用化に伴う複雑さと複雑さを掘り下げることであり, 信頼性と説明責任を高める方法の理解を深めることである。
論文 参考訳(メタデータ) (2023-12-07T11:31:20Z) - Introduction to Transformers: an NLP Perspective [59.0241868728732]
本稿では、トランスフォーマーの基本概念と、これらのモデルの最近の進歩を形作る重要な技術を紹介する。
これには、標準のTransformerアーキテクチャ、一連のモデル改良、一般的なアプリケーションの記述が含まれる。
論文 参考訳(メタデータ) (2023-11-29T13:51:04Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformerは、シーケンシャルデータ内のコンテキスト関係を理解するために自己認識メカニズムを使用するディープニューラルネットワークである。
Transformerモデルは、入力シーケンス要素間の長い依存関係を処理し、並列処理を可能にする。
我々の調査では、トランスフォーマーベースのモデルのためのトップ5のアプリケーションドメインを特定します。
論文 参考訳(メタデータ) (2023-06-11T23:13:51Z) - Foundation Transformers [105.06915886136524]
我々は、真の汎用モデリングのためのファンデーショントランスフォーマーの開発を求めている。
本研究では,その目的を達成するための変圧器の変種であるマグニートーを導入する。
論文 参考訳(メタデータ) (2022-10-12T17:16:27Z) - Vision Transformers for Action Recognition: A Survey [41.69370782177517]
コンピュータビジョン問題を解決する強力なツールとして、ビジョントランスフォーマーが登場している。
最近の技術は、多数のビデオ関連タスクを解決するために、画像領域を超えたトランスフォーマーの有効性を証明している。
人間の行動認識は、広く応用されているため、研究コミュニティから特別に注目を集めている。
論文 参考訳(メタデータ) (2022-09-13T02:57:05Z) - Transformers in Vision: A Survey [101.07348618962111]
トランスフォーマーは、入力シーケンス要素間の長い依存関係をモデリングし、シーケンスの並列処理をサポートします。
変圧器は設計に最小限の誘導バイアスを必要とし、自然にセット関数として適しています。
本調査は,コンピュータビジョン分野におけるトランスフォーマーモデルの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2021-01-04T18:57:24Z) - A Survey on Visual Transformer [126.56860258176324]
Transformerは、主に自己認識機構に基づくディープニューラルネットワークの一種である。
本稿では、これらの視覚変換器モデルについて、異なるタスクで分類し、それらの利点と欠点を分析することでレビューする。
論文 参考訳(メタデータ) (2020-12-23T09:37:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。