Transformer in Touch: A Survey
- URL: http://arxiv.org/abs/2405.12779v1
- Date: Tue, 21 May 2024 13:26:27 GMT
- Title: Transformer in Touch: A Survey
- Authors: Jing Gao, Ning Cheng, Bin Fang, Wenjuan Han,
- Abstract summary: The Transformer model, initially achieving significant success in the field of natural language processing, has recently shown great potential in the application of tactile perception.
This review aims to comprehensively outline the application and development of Transformers in tactile technology.
- Score: 29.622771021984594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Transformer model, initially achieving significant success in the field of natural language processing, has recently shown great potential in the application of tactile perception. This review aims to comprehensively outline the application and development of Transformers in tactile technology. We first introduce the two fundamental concepts behind the success of the Transformer: the self-attention mechanism and large-scale pre-training. Then, we delve into the application of Transformers in various tactile tasks, including but not limited to object recognition, cross-modal generation, and object manipulation, offering a concise summary of the core methodologies, performance benchmarks, and design highlights. Finally, we suggest potential areas for further research and future work, aiming to generate more interest within the community, tackle existing challenges, and encourage the use of Transformer models in the tactile field.
Related papers
- A Survey on Large Language Models from Concept to Implementation [4.219910716090213]
Recent advancements in Large Language Models (LLMs) have broadened the scope of natural language processing (NLP) applications.
This paper investigates the multifaceted applications of these models, with an emphasis on the GPT series.
This exploration focuses on the transformative impact of artificial intelligence (AI) driven tools in revolutionizing traditional tasks like coding and problem-solving.
arXiv Detail & Related papers (2024-03-27T19:35:41Z) - Adventures of Trustworthy Vision-Language Models: A Survey [54.76511683427566]
This paper conducts a thorough examination of vision-language transformers, employing three fundamental principles of responsible AI: Bias, Robustness, and Interpretability.
The primary objective of this paper is to delve into the intricacies and complexities associated with the practical use of transformers, with the overarching goal of advancing our comprehension of how to enhance their reliability and accountability.
arXiv Detail & Related papers (2023-12-07T11:31:20Z) - Introduction to Transformers: an NLP Perspective [59.0241868728732]
We introduce basic concepts of Transformers and present key techniques that form the recent advances of these models.
This includes a description of the standard Transformer architecture, a series of model refinements, and common applications.
arXiv Detail & Related papers (2023-11-29T13:51:04Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data.
transformer models excel in handling long dependencies between input sequence elements and enable parallel processing.
Our survey encompasses the identification of the top five application domains for transformer-based models.
arXiv Detail & Related papers (2023-06-11T23:13:51Z) - Foundation Transformers [105.06915886136524]
We call for the development of Foundation Transformer for true general-purpose modeling.
In this work, we introduce a Transformer variant, named Magneto, to fulfill the goal.
arXiv Detail & Related papers (2022-10-12T17:16:27Z) - Vision Transformers for Action Recognition: A Survey [41.69370782177517]
Vision transformers are emerging as a powerful tool to solve computer vision problems.
Recent techniques have proven the efficacy of transformers beyond the image domain to solve numerous video-related tasks.
Human action recognition is receiving special attention from the research community due to its widespread applications.
arXiv Detail & Related papers (2022-09-13T02:57:05Z) - Transformers in Vision: A Survey [101.07348618962111]
Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence.
Transformers require minimal inductive biases for their design and are naturally suited as set-functions.
This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline.
arXiv Detail & Related papers (2021-01-04T18:57:24Z) - A Survey on Visual Transformer [126.56860258176324]
Transformer is a type of deep neural network mainly based on the self-attention mechanism.
In this paper, we review these vision transformer models by categorizing them in different tasks and analyzing their advantages and disadvantages.
arXiv Detail & Related papers (2020-12-23T09:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.