Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models
- URL: http://arxiv.org/abs/2405.12939v1
- Date: Tue, 21 May 2024 17:12:19 GMT
- Title: Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models
- Authors: Zhangyue Yin, Qiushi Sun, Qipeng Guo, Zhiyuan Zeng, Xiaonan Li, Tianxiang Sun, Cheng Chang, Qinyuan Cheng, Ding Wang, Xiaofeng Mou, Xipeng Qiu, XuanJing Huang,
- Abstract summary: Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
- Score: 84.15513004135576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Chain-of-Thought prompting have facilitated significant breakthroughs for Large Language Models (LLMs) in complex reasoning tasks. Current research enhances the reasoning performance of LLMs by sampling multiple reasoning chains and ensembling based on the answer frequency. However, this approach fails in scenarios where the correct answers are in the minority. We identify this as a primary factor constraining the reasoning capabilities of LLMs, a limitation that cannot be resolved solely based on the predicted answers. To address this shortcoming, we introduce a hierarchical reasoning aggregation framework AoR (Aggregation of Reasoning), which selects answers based on the evaluation of reasoning chains. Additionally, AoR incorporates dynamic sampling, adjusting the number of reasoning chains in accordance with the complexity of the task. Experimental results on a series of complex reasoning tasks show that AoR outperforms prominent ensemble methods. Further analysis reveals that AoR not only adapts various LLMs but also achieves a superior performance ceiling when compared to current methods.
Related papers
- Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-thought (CoT) prompting is a popular in-context learning approach for large language models (LLMs)
This paper introduces a new approach named Latent Reasoning Skills (LaRS) that employs unsupervised learning to create a latent space representation of rationales.
arXiv Detail & Related papers (2023-12-07T20:36:10Z) - Sentiment Analysis through LLM Negotiations [58.67939611291001]
A standard paradigm for sentiment analysis is to rely on a singular LLM and makes the decision in a single round.
This paper introduces a multi-LLM negotiation framework for sentiment analysis.
arXiv Detail & Related papers (2023-11-03T12:35:29Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
Large language models (LLMs) can achieve highly effective performance on various reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting as demonstrations.
We introduce Iter-CoT (Iterative bootstrapping in Chain-of-Thoughts Prompting), an iterative bootstrapping approach for selecting exemplars and generating reasoning chains.
arXiv Detail & Related papers (2023-04-23T13:54:39Z) - ThinkSum: Probabilistic reasoning over sets using large language models [18.123895485602244]
We propose a two-stage probabilistic inference paradigm, ThinkSum, which reasons over sets of objects or facts in a structured manner.
We demonstrate the possibilities and advantages of ThinkSum on the BIG-bench suite of LLM evaluation tasks.
arXiv Detail & Related papers (2022-10-04T00:34:01Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
We study the task of prompting large-scale language models to perform multi-step reasoning.
A central question is which reasoning examples make the most effective prompts.
We propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning.
arXiv Detail & Related papers (2022-10-03T05:33:27Z) - Selection-Inference: Exploiting Large Language Models for Interpretable
Logical Reasoning [14.663216851932646]
We show that language models tend to perform fairly well at single step inference tasks, but struggle to chain together multiple reasoning steps to solve more complex problems.
We propose a Selection-Inference (SI) framework that exploits pre-trained LLMs as general processing modules.
We show that a 7B parameter LLM used within the SI framework in a 5-shot generalisation setting, with no fine-tuning, yields a performance improvement of over 100%.
arXiv Detail & Related papers (2022-05-19T17:25:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.