RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement
- URL: http://arxiv.org/abs/2412.12881v1
- Date: Tue, 17 Dec 2024 13:05:36 GMT
- Title: RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement
- Authors: Jinhao Jiang, Jiayi Chen, Junyi Li, Ruiyang Ren, Shijie Wang, Wayne Xin Zhao, Yang Song, Tao Zhang,
- Abstract summary: Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.
We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.
Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
- Score: 85.08223786819532
- License:
- Abstract: Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks. Despite the successes of chain-of-thought and tree-based search methods, they mainly depend on the internal knowledge of LLMs to search over intermediate reasoning steps, limited to dealing with simple tasks involving fewer reasoning steps. In this paper, we propose \textbf{RAG-Star}, a novel RAG approach that integrates the retrieved information to guide the tree-based deliberative reasoning process that relies on the inherent knowledge of LLMs. By leveraging Monte Carlo Tree Search, RAG-Star iteratively plans intermediate sub-queries and answers for reasoning based on the LLM itself. To consolidate internal and external knowledge, we propose an retrieval-augmented verification that utilizes query- and answer-aware reward modeling to provide feedback for the inherent reasoning of LLMs. Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
Related papers
- MCTS-KBQA: Monte Carlo Tree Search for Knowledge Base Question Answering [5.926690985669765]
This study explores how to enhance the reasoning capabilities of large language models (LLMs) in knowledge base question answering (KBQA) by leveraging Monte Carlo Tree Search (MCTS)
We design a carefully designed step-wise reward mechanism that requires only direct prompting of open-source instruction LLMs.
We contribute new data resources to the KBQA community by annotating intermediate reasoning processes for existing question-SPARQL datasets using distant supervision.
arXiv Detail & Related papers (2025-02-19T04:58:39Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - LLM-based Discriminative Reasoning for Knowledge Graph Question Answering [42.277864969014296]
Large language models (LLMs) based on generative pre-trained Transformer have achieved remarkable performance on knowledge graph question-answering tasks.
We propose a novel LLM-based Discriminative Reasoning (LDR) method to explicitly model the subgraph retrieval and answer inference process.
arXiv Detail & Related papers (2024-12-17T08:07:16Z) - RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
We propose a novel framework, RuAG, to automatically distill large volumes of offline data into interpretable first-order logic rules.
We evaluate our framework on public and private industrial tasks, including natural language processing, time-series, decision-making, and industrial tasks.
arXiv Detail & Related papers (2024-11-04T00:01:34Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
We show that large language models (LLMs) exhibit failure patterns akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks.
We propose a novel reasoning approach named Concise and Organized Perception (COP)
COP carefully analyzes the given statements to identify the most pertinent information while eliminating redundancy efficiently.
arXiv Detail & Related papers (2023-10-05T04:47:49Z) - Rethinking with Retrieval: Faithful Large Language Model Inference [91.66406351103484]
We propose a novel post-processing approach, rethinking with retrieval (RR)
RR retrieves relevant external knowledge based on the reasoning steps obtained from the chain-of-thought prompting.
We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks.
arXiv Detail & Related papers (2022-12-31T22:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.