RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement
- URL: http://arxiv.org/abs/2412.12881v1
- Date: Tue, 17 Dec 2024 13:05:36 GMT
- Title: RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement
- Authors: Jinhao Jiang, Jiayi Chen, Junyi Li, Ruiyang Ren, Shijie Wang, Wayne Xin Zhao, Yang Song, Tao Zhang,
- Abstract summary: Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.<n>We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.<n>Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
- Score: 85.08223786819532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks. Despite the successes of chain-of-thought and tree-based search methods, they mainly depend on the internal knowledge of LLMs to search over intermediate reasoning steps, limited to dealing with simple tasks involving fewer reasoning steps. In this paper, we propose \textbf{RAG-Star}, a novel RAG approach that integrates the retrieved information to guide the tree-based deliberative reasoning process that relies on the inherent knowledge of LLMs. By leveraging Monte Carlo Tree Search, RAG-Star iteratively plans intermediate sub-queries and answers for reasoning based on the LLM itself. To consolidate internal and external knowledge, we propose an retrieval-augmented verification that utilizes query- and answer-aware reward modeling to provide feedback for the inherent reasoning of LLMs. Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
Related papers
- Guiding Reasoning in Small Language Models with LLM Assistance [23.3038074903744]
Small Language Models cast doubt suitability for tasks demanding deep, multi-step logical deduction.
This paper introduces a framework called Small Reasons, Large Hints, which selectively augments SLM reasoning with targeted guidance from large language models.
Our experiments on mathematical reasoning datasets demonstrate that targeted external scaffolding significantly improves performance.
arXiv Detail & Related papers (2025-04-14T06:32:45Z) - MCTS-RAG: Enhancing Retrieval-Augmented Generation with Monte Carlo Tree Search [27.378904180238557]
We introduce MCTS-RAG, a novel approach that enhances the reasoning capabilities of small language models on knowledge-intensive tasks.
Unlike standard RAG methods, which typically retrieve information independently from reasoning, MCTS-RAG combines structured reasoning with adaptive retrieval.
This integrated approach enhances decision-making, reduces hallucinations, and ensures improved factual accuracy and response consistency.
arXiv Detail & Related papers (2025-03-26T17:46:08Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.
Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.
Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - MCTS-KBQA: Monte Carlo Tree Search for Knowledge Base Question Answering [5.926690985669765]
This study explores how to enhance the reasoning capabilities of large language models (LLMs) in knowledge base question answering (KBQA) by leveraging Monte Carlo Tree Search (MCTS)
We design a carefully designed step-wise reward mechanism that requires only direct prompting of open-source instruction LLMs.
We contribute new data resources to the KBQA community by annotating intermediate reasoning processes for existing question-SPARQL datasets using distant supervision.
arXiv Detail & Related papers (2025-02-19T04:58:39Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
We propose a novel framework, RuAG, to automatically distill large volumes of offline data into interpretable first-order logic rules.
We evaluate our framework on public and private industrial tasks, including natural language processing, time-series, decision-making, and industrial tasks.
arXiv Detail & Related papers (2024-11-04T00:01:34Z) - Improving Causal Reasoning in Large Language Models: A Survey [16.55801836321059]
Causal reasoning is a crucial aspect of intelligence, essential for problem-solving, decision-making, and understanding the world.
Large language models (LLMs) can generate rationales for their outputs, but their ability to reliably perform causal reasoning remains uncertain.
arXiv Detail & Related papers (2024-10-22T04:18:19Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering [46.41364317172677]
We propose a retrieval augmented reasoning method, FiDeLiS, which enhances knowledge graph question answering.
FiDeLiS uses a keyword-enhanced retrieval mechanism that fetches relevant entities and relations from a vector-based index of KGs.
A distinctive feature of our approach is its blend of natural language planning with beam search to optimize the selection of reasoning paths.
arXiv Detail & Related papers (2024-05-22T17:56:53Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
This paper proposes a novel framework named textbfSearch-in-the-Chain (SearChain) for the interaction between Information Retrieval (IR) and Large Language Model (LLM)
Experiments show that SearChain outperforms state-of-the-art baselines on complex knowledge-intensive tasks.
arXiv Detail & Related papers (2023-04-28T10:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.