論文の概要: Large Language Models for Education: A Survey
- arxiv url: http://arxiv.org/abs/2405.13001v1
- Date: Sun, 12 May 2024 01:50:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 03:08:05.091601
- Title: Large Language Models for Education: A Survey
- Title(参考訳): 教育用大規模言語モデル:調査
- Authors: Hanyi Xu, Wensheng Gan, Zhenlian Qi, Jiayang Wu, Philip S. Yu,
- Abstract要約: 大規模言語モデル(LLM)は、様々なアプリケーションでますます使われている。
LLMをスマート教育(LLMEdu)に利用することは、世界中の国々にとって重要な戦略的方向性である。
LLMは、教育の質の向上、教育モデルの変更、教師の役割の変更において大きな期待を示してきたが、これらの技術は依然としていくつかの課題に直面している。
- 参考スコア(独自算出の注目度): 32.42330148200439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) has a profound impact on traditional education. In recent years, large language models (LLMs) have been increasingly used in various applications such as natural language processing, computer vision, speech recognition, and autonomous driving. LLMs have also been applied in many fields, including recommendation, finance, government, education, legal affairs, and finance. As powerful auxiliary tools, LLMs incorporate various technologies such as deep learning, pre-training, fine-tuning, and reinforcement learning. The use of LLMs for smart education (LLMEdu) has been a significant strategic direction for countries worldwide. While LLMs have shown great promise in improving teaching quality, changing education models, and modifying teacher roles, the technologies are still facing several challenges. In this paper, we conduct a systematic review of LLMEdu, focusing on current technologies, challenges, and future developments. We first summarize the current state of LLMEdu and then introduce the characteristics of LLMs and education, as well as the benefits of integrating LLMs into education. We also review the process of integrating LLMs into the education industry, as well as the introduction of related technologies. Finally, we discuss the challenges and problems faced by LLMEdu, as well as prospects for future optimization of LLMEdu.
- Abstract(参考訳): 人工知能(AI)は伝統的な教育に大きな影響を与えている。
近年,自然言語処理,コンピュータビジョン,音声認識,自律運転など,大規模言語モデル (LLM) が多用されている。
LLMは、レコメンデーション、金融、政府、教育、法務、金融など、多くの分野にも適用されている。
強力な補助ツールとして、LLMは深層学習、事前学習、微調整、強化学習といった様々な技術を取り入れている。
LLMをスマート教育(LLMEdu)に利用することは、世界中の国々にとって重要な戦略的方向性である。
LLMは、教育の質の向上、教育モデルの変更、教師の役割の変更において大きな期待を示してきたが、これらの技術は依然としていくつかの課題に直面している。
本稿では,LLMEduの体系的レビューを行い,現在の技術,課題,今後の発展に焦点をあてる。
まず,LLMEduの現状を概説し,LLMと教育の特徴を紹介するとともに,LLMを教育に組み込むことのメリットも紹介する。
また,LLMを教育産業に統合するプロセスや,関連技術の導入についても検討する。
最後に,LLMEduが直面する課題と課題,および今後のLLMEduの最適化の可能性について議論する。
関連論文リスト
- A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - LLMs Meet Multimodal Generation and Editing: A Survey [89.76691959033323]
本調査では,画像,ビデオ,3D,オーディオなど,さまざまな領域にわたるマルチモーダル生成と編集について詳述する。
これらの分野でのマイルストーンの成果を要約し、これらの研究をLLM法とCLIP/T5法に分類する。
我々は、既存の生成モデルを人間とコンピュータの相互作用に活用できるツール強化マルチモーダルエージェントを掘り下げる。
論文 参考訳(メタデータ) (2024-05-29T17:59:20Z) - Exploring the landscape of large language models: Foundations, techniques, and challenges [8.042562891309414]
この記事では、コンテキスト内学習の力学と微調整アプローチのスペクトルについて光を当てている。
革新的な強化学習フレームワークを通じて、LLMが人間の好みとより緊密に連携する方法について検討する。
LLMデプロイメントの倫理的側面は議論され、マインドフルで責任あるアプリケーションの必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-18T08:01:20Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - ChatGPT Alternative Solutions: Large Language Models Survey [0.0]
大規模言語モデル(LLM)はこの領域における研究貢献の急増に火をつけた。
近年、学術と産業のダイナミックな相乗効果が見られ、LLM研究の分野を新たな高地へと押し上げた。
この調査は、ジェネレーティブAIの現状をよく理解し、さらなる探索、強化、イノベーションの機会に光を当てている。
論文 参考訳(メタデータ) (2024-03-21T15:16:50Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Taking the Next Step with Generative Artificial Intelligence: The Transformative Role of Multimodal Large Language Models in Science Education [13.87944568193996]
MLLM(Multimodal Large Language Models)は、テキスト、音声、視覚入力を含むマルチモーダルデータを処理できる。
本稿では,科学教育の中心的な側面におけるMLLMの変革的役割について,模範的な革新的な学習シナリオを提示することによって考察する。
論文 参考訳(メタデータ) (2024-01-01T18:11:43Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Large Language Models in Education: Vision and Opportunities [23.399139761508934]
本稿では,大規模言語モデル(LLM)の研究背景とモチベーションを紹介する。
次に、デジタル教育とEduLLMの関係について論じ、教育大規模モデルの現在の研究状況について要約する。
主な貢献は、研究背景の体系的概要とビジョン、大規模教育モデル(LLM4Edu)のモチベーションと応用である。
論文 参考訳(メタデータ) (2023-11-22T05:04:20Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。