Amplifying Aspect-Sentence Awareness: A Novel Approach for Aspect-Based Sentiment Analysis
- URL: http://arxiv.org/abs/2405.13013v2
- Date: Sat, 26 Oct 2024 21:09:33 GMT
- Title: Amplifying Aspect-Sentence Awareness: A Novel Approach for Aspect-Based Sentiment Analysis
- Authors: Adamu Lawan, Juhua Pu, Haruna Yunusa, Jawad Muhammad, Aliyu Umar,
- Abstract summary: Aspect-Based Sentiment Analysis (ABSA) is increasingly crucial in Natural Language Processing (NLP)
ABSA goes beyond traditional sentiment analysis by extracting sentiments related to specific aspects mentioned in the text.
We propose Amplifying Aspect-Sentence Awareness (A3SN), a novel technique designed to enhance ABSA through amplifying aspect-sentence awareness attention.
- Score: 2.9045498954705886
- License:
- Abstract: Aspect-Based Sentiment Analysis (ABSA) is increasingly crucial in Natural Language Processing (NLP) for applications such as customer feedback analysis and product recommendation systems. ABSA goes beyond traditional sentiment analysis by extracting sentiments related to specific aspects mentioned in the text; existing attention-based models often need help to effectively connect aspects with context due to language complexity and multiple sentiment polarities in a single sentence. Recent research underscores the value of integrating syntactic information, such as dependency trees, to understand long-range syntactic relationships better and link aspects with context. Despite these advantages, challenges persist, including sensitivity to parsing errors and increased computational complexity when combining syntactic and semantic information. To address these issues, we propose Amplifying Aspect-Sentence Awareness (A3SN), a novel technique designed to enhance ABSA through amplifying aspect-sentence awareness attention. Following the transformer's standard process, our innovative approach incorporates multi-head attention mechanisms to augment the model with sentence and aspect semantic information. We added another multi-head attention module: amplify aspect-sentence awareness attention. By doubling its focus between the sentence and aspect, we effectively highlighted aspect importance within the sentence context. This enables accurate capture of subtle relationships and dependencies. Additionally, gated fusion integrates feature representations from multi-head and amplified aspect-sentence awareness attention mechanisms, which is essential for ABSA. Experimental results across three benchmark datasets demonstrate A3SN's effectiveness and outperform state-of-the-art (SOTA) baseline models.
Related papers
- Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
Recommendation systems harness user-item interactions like clicks and reviews to learn their representations.
Previous studies improve recommendation accuracy and interpretability by modeling user preferences across various aspects and intents.
We introduce a chain-based prompting approach to uncover semantic aspect-aware interactions.
arXiv Detail & Related papers (2023-12-26T15:44:09Z) - A Novel Energy based Model Mechanism for Multi-modal Aspect-Based
Sentiment Analysis [85.77557381023617]
We propose a novel framework called DQPSA for multi-modal sentiment analysis.
PDQ module uses the prompt as both a visual query and a language query to extract prompt-aware visual information.
EPE module models the boundaries pairing of the analysis target from the perspective of an Energy-based Model.
arXiv Detail & Related papers (2023-12-13T12:00:46Z) - Syntax-Informed Interactive Model for Comprehensive Aspect-Based
Sentiment Analysis [0.0]
We introduce an innovative model: Syntactic Dependency Enhanced Multi-Task Interaction Architecture (SDEMTIA) for comprehensive ABSA.
Our approach innovatively exploits syntactic knowledge (dependency relations and types) using a specialized Syntactic Dependency Embedded Interactive Network (SDEIN)
We also incorporate a novel and efficient message-passing mechanism within a multi-task learning framework to bolster learning efficacy.
arXiv Detail & Related papers (2023-11-28T16:03:22Z) - Aspect-oriented Opinion Alignment Network for Aspect-Based Sentiment
Classification [14.212306015270208]
We propose a novel Aspect-oriented Opinion Alignment Network (AOAN) to capture the contextual association between opinion words and the corresponding aspect.
In addition, we design a multi-perspective attention mechanism that align relevant opinion information with respect to the given aspect.
Our model achieves state-of-the-art results on three benchmark datasets.
arXiv Detail & Related papers (2023-08-22T13:55:36Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - A semantically enhanced dual encoder for aspect sentiment triplet
extraction [0.7291396653006809]
Aspect sentiment triplet extraction (ASTE) is a crucial subtask of aspect-based sentiment analysis (ABSA)
Previous research has focused on enhancing ASTE through innovative table-filling strategies.
We propose a framework that leverages both a basic encoder, primarily based on BERT, and a particular encoder comprising a Bi-LSTM network and graph convolutional network (GCN)
Experiments conducted on benchmark datasets demonstrate the state-of-the-art performance of our proposed framework.
arXiv Detail & Related papers (2023-06-14T09:04:14Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Out of Context: A New Clue for Context Modeling of Aspect-based
Sentiment Analysis [54.735400754548635]
ABSA aims to predict the sentiment expressed in a review with respect to a given aspect.
The given aspect should be considered as a new clue out of context in the context modeling process.
We design several aspect-aware context encoders based on different backbones.
arXiv Detail & Related papers (2021-06-21T02:26:03Z) - Deep Context- and Relation-Aware Learning for Aspect-based Sentiment
Analysis [3.7175198778996483]
We propose Deep Contextualized Relation-Aware Network (DCRAN), which allows interactive relations among subtasks with deep contextual information.
DCRAN significantly outperforms previous state-of-the-art methods by large margins on three widely used benchmarks.
arXiv Detail & Related papers (2021-06-07T17:16:15Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.