論文の概要: DuetSim: Building User Simulator with Dual Large Language Models for Task-Oriented Dialogues
- arxiv url: http://arxiv.org/abs/2405.13028v1
- Date: Thu, 16 May 2024 06:24:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 02:48:13.093508
- Title: DuetSim: Building User Simulator with Dual Large Language Models for Task-Oriented Dialogues
- Title(参考訳): DuetSim:タスク指向対話のための二重大言語モデルを用いたユーザシミュレータの構築
- Authors: Xiang Luo, Zhiwen Tang, Jin Wang, Xuejie Zhang,
- Abstract要約: 本稿では,大規模言語モデルを活用することで,タスク指向対話の複雑な要求に対処する新しいフレームワークであるDuetSimを紹介する。
DuetSim は2つの LLM をタンデムで採用することで従来の手法とは異なっている。
提案手法の有効性を,MultiWOZデータセットを用いた広範囲な実験により検証し,応答品質と正しさの向上を強調した。
- 参考スコア(独自算出の注目度): 7.765092134290888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User Simulators play a pivotal role in training and evaluating task-oriented dialogue systems. Traditional user simulators typically rely on human-engineered agendas, resulting in generated responses that often lack diversity and spontaneity. Although large language models (LLMs) exhibit a remarkable capacity for generating coherent and contextually appropriate utterances, they may fall short when tasked with generating responses that effectively guide users towards their goals, particularly in dialogues with intricate constraints and requirements. This paper introduces DuetSim, a novel framework designed to address the intricate demands of task-oriented dialogues by leveraging LLMs. DuetSim stands apart from conventional approaches by employing two LLMs in tandem: one dedicated to response generation and the other focused on verification. This dual LLM approach empowers DuetSim to produce responses that not only exhibit diversity but also demonstrate accuracy and are preferred by human users. We validate the efficacy of our method through extensive experiments conducted on the MultiWOZ dataset, highlighting improvements in response quality and correctness, largely attributed to the incorporation of the second LLM. Our code is accessible at: https://github.com/suntea233/DuetSim.
- Abstract(参考訳): ユーザシミュレータは、タスク指向対話システムのトレーニングと評価において重要な役割を果たす。
従来のユーザーシミュレータは通常、人間工学的なアジェンダに依存しており、その結果、しばしば多様性や自発性に欠ける応答が生成される。
大規模言語モデル(LLM)は、一貫性があり、文脈的に適切な発話を生成するのに顕著な能力を持っているが、特に複雑な制約と要求のある対話において、ユーザを効果的に目標に向かって導く応答を生成するタスクをこなすと、不足する可能性がある。
本稿では,LLMを利用したタスク指向対話の複雑な要求に対処する新しいフレームワークであるDuetSimを紹介する。
DuetSim は2つの LLM をタンデムで採用することで従来の手法とは異なっている。
このデュアルLLMアプローチは、DuetSimに、多様性を示すだけでなく、正確さを示し、人間のユーザから好まれる応答を生成する権限を与える。
提案手法の有効性は,MultiWOZデータセットを用いた広範囲な実験により検証され,第2次LLMの導入による応答品質と正しさの向上が注目されている。
私たちのコードは、https://github.com/suntea233/DuetSimでアクセスできます。
関連論文リスト
- LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Elicitron: An LLM Agent-Based Simulation Framework for Design Requirements Elicitation [38.98478510165569]
本稿では,Large Language Models (LLMs) を利用した新たなフレームワークを提案する。
LLMは多数のシミュレーションユーザ(LLMエージェント)を生成するために使用され、より広い範囲のユーザニーズの探索を可能にする。
論文 参考訳(メタデータ) (2024-04-04T17:36:29Z) - How Reliable is Your Simulator? Analysis on the Limitations of Current LLM-based User Simulators for Conversational Recommendation [14.646529557978512]
本稿では,対話型レコメンダシステムのためのユーザシミュレータ構築におけるLarge Language Modelsの使用制限について分析する。
会話履歴やユーザシミュレータの応答で発生するデータ漏洩は,評価結果を膨らませる結果となる。
そこで我々はSimpleUserSimを提案する。
論文 参考訳(メタデータ) (2024-03-25T04:21:06Z) - User-LLM: Efficient LLM Contextualization with User Embeddings [24.099604517203606]
大規模言語モデル(LLM)のコンテキスト化にユーザ埋め込みを活用する新しいフレームワークであるUser-LLMを提案する。
MovieLens、Amazon Review、Google Local Reviewのデータセットに関する我々の実験は、様々なタスクで大きなパフォーマンス向上を示している。
論文 参考訳(メタデータ) (2024-02-21T08:03:27Z) - Plan-Grounded Large Language Models for Dual Goal Conversational
Settings [7.694972908311347]
ユーザインストラクションに従うための大規模言語モデルのトレーニングは、LLMに人間と整合しながら、流動的に会話できる十分な能力を供給することが示されている。
しかし、LLMが混合開始型環境でどのように計画的な会話を導いてくれるかは、完全には明らかではない。
本稿では,手続き的計画に基づく対話を基盤とし,対話の主導権を握り,システムの動作にガードレールを課す新しいLLMを提案する。
論文 参考訳(メタデータ) (2024-02-01T22:56:39Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
本稿では,ユーザガイド応答最適化 (UGRO) という代替手法を提案し,タスク指向の対話モデルと組み合わせる。
このアプローチでは、アノテーションのないユーザシミュレータとしてLLMを使用して対話応答を評価し、より小型のエンドツーエンドTODモデルと組み合わせる。
提案手法は従来のSOTA(State-of-the-art)よりも優れている。
論文 参考訳(メタデータ) (2023-06-16T13:04:56Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
我々は、よりパーソナライズされ魅力的な応答を提供するために、新しい言語的キューに基づく思考の連鎖(textitCue-CoT)を提案する。
中国語と英語の6つのデータセットからなる詳細な対話質問を用いたベンチマークを構築した。
実験により,提案手法は,すべてのデータセットにおいて,テクステルパーフルネスとテクスチタアクセプタビリティの両方の観点から,標準的プロンプト法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-19T16:27:43Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - Multi-Agent Task-Oriented Dialog Policy Learning with Role-Aware Reward
Decomposition [64.06167416127386]
本稿では,システムとユーザの両方をダイアログエージェントとみなすマルチエージェントダイアログポリシー学習を提案する。
2人のエージェントが互いに相互作用し、同時に一緒に学習されます。
その結果,本手法がシステムポリシとユーザポリシを同時に構築できることが示唆された。
論文 参考訳(メタデータ) (2020-04-08T04:51:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。